Refine search
Results 1411-1420 of 6,560
Sludge retention time affects the microbial community structure: A large-scale sampling of aeration tanks throughout China Full text
2020
Sun, Chenxiang | Zhang, Bing | Chen, Zhan | Qin, Wentao | Wen, Xianghua
Microbial communities in activated sludge (AS) have a significant influence on the functions and stability of aeration tanks in wastewater treatment plants (WWTPs). The microbial community structure is affected by various factors, among which operational parameters outcompeted as the key factors in shaping its structure. However, as an important operational parameter of aeration tank, the mechanisms by which sludge retention time (SRT) affect community properties remain unclear. In this study, 144 AS samples from aeration tanks of 48 full-scale WWTPs operating under different SRT conditions were examined via high-throughput Illumina-MiSeq sequencing technology. The results indicated that SRT significantly affected the diversity, composition, assembly, and co-occurrence patterns of the microbial community in aeration tanks. Moreover, our results provided clear evidence that the microbial communities in aeration tanks operating under SRT of 10–20 days have the highest biodiversity, the lowest stochastic processes influence, the more stable molecular ecological network structure, the lowest risks of filamentous sludge bulking and enhanced nitrogen removal potential. The microbial communities could be more stable and resilient to disturbance when aeration tanks were operated under this SRT condition. The findings of this study provided a reference for the optimization of aeration tanks from an of microbial community perspective.
Show more [+] Less [-]Multisensory pollution: Artificial light at night and anthropogenic noise have interactive effects on activity patterns of great tits (Parus major) Full text
2020
Dominoni, Davide | Smit, Judith A.H. | Visser, Marcel E. | Halfwerk, Wouter
Urbanisation is increasing globally at a rapid pace. Consequently, wild species face novel environmental stressors associated with urban sprawl, such as artificial light at night and noise. These stressors have pervasive effects on the behaviour and physiology of many species. Most studies have singled out the impact of just one of these stressors, while in the real world they are likely to co-occur both temporally and spatially, and we thus lack a clear understanding of the combined effect of anthropogenic stressors on wild species. Here, we experimentally exposed captive male great tits (Parus major) to artificial light at night and 24 h noise in a fully factorial experiment. We then measured the effect of both these stressors on their own and their combination on the amount and timing of activity patterns. We found that both light and noise affected activity patterns when presented alone, but in opposite ways: light increased activity, particularly at night, while noise reduced it, particularly during the day. When the two stressors were combined, we found a synergistic effect on the total activity and the nighttime activity, but an antagonistic effect on daytime activity. The significant interaction between noise and light treatment also differed among forest and city birds. Indeed, we detected a significant interactive effect on light and noise on daytime, nighttime, dusktime and offset of activity of urban birds, but not of forest birds. These results suggest that both artificial light at night and anthropogenic noise can drive changes in activity patterns, but that the specific impacts depend on the habitat of origin. Furthermore, our results demonstrate that co-occurring exposure to noise and light can lead to a stronger impact at night than predicted from the additive effects and thus that multisensory pollution may be a considerable threat for wildlife.
Show more [+] Less [-]Can atmospheric pollutants influence menstrual cycle function? Full text
2020
Giorgis-Allemand, L. | Thalabard, J.C. | Rosetta, L. | Siroux, V. | Bouyer, J. | Slama, R.
A few experimental studies suggest that atmospheric pollutants could affect the endocrine system, and in particular stress hormones and the hypothalamic-hypophyseal-ovarian axis, which could in turn influence menstrual cycle function. We aimed to study the possible short-term effects of atmospheric pollutants on the length of the follicular and luteal phases and on the duration of the menstrual cycle in humans. To do so, from a nation-wide study on couples’ fecundity, we recruited 184 women not using contraception who collected urine samples at least every other day during one menstrual cycle, from which a progesterone metabolite was assayed, allowing estimation of the duration of the follicular and luteal phases of the cycle. Atmospheric pollution (nitrogen dioxide and particulate matter with an aerodynamical diameter below 10 μm, PM₁₀) levels were estimated from a dispersion model with a 1-km resolution combined with permanent monitoring stations measurements, allowing to estimate exposures in the 30-day, 1–10 and 11-30-day periods before the start of the menstrual cycle. Regression models allowed to quantify the change in cycle duration associated with atmospheric pollutants and adjusted for potential confounders. Follicular phase duration increased on average by 0.7 day (95% confidence interval, CI, 0.2; 1.3) for each increase by 10 μg/m³ in NO₂ concentration averaged over the 30 days before the cycle and by 1.6 day (95% CI, 0.3; 2.9) for each increase by 10 μg/m³ in PM₁₀. There was no strong evidence of associations of exposures in this time window with luteal phase or with total menstrual cycle durations (p > 0.2). Exposures in the 1–10 day period before the cycle start were also associated with increased follicular phase duration. This study is one of the first prospective studies to suggest short-term alterations in follicular phase duration following atmospheric pollutants exposure.
Show more [+] Less [-]Bacterial foraging facilitates aggregation of Chlamydomonas microsphaera in an organic carbon source-limited aquatic environment Full text
2020
Zhao, Ranran | Chen, Guowei | Liu, Li | Zhang, Wei | Sun, Yifei | Li, Baoguo | Wang, Gang
Microalgal aggregation is a key to many ecosystem functions in aquatic environments. Yet mechanistic understanding of microalgae aggregation, especially the interactions with ubiquitous bacteria populations, remains elusive. We reported an experimental study illustrating how the emerging bacterial populations interacted with a model microalga (Chlamydomonas microsphaera) cells and the consequent aggregation patterns. Results showed that the emergence of bacterial populations significantly stimulated C. microsphaera aggregation. Both bacterial and C. microsphaera motilities were remarkably excited upon coculturing, with the mean cell velocity being up to 2.67 and 1.80 times of those of separate bacterial and C. microsphaera cultures, respectively. The stimulated bacterial and C. microsphaera cell velocity upon coculturing would likely provide a mechanism for enhanced probability of cell-cell collisions that led to amplified aggregation of C. microsphaera population. Correlation analysis revealed that bacterial resource foraging (for polysaccharides) was likely a candidate mechanism for stimulated cell motility in an organic carbon source-limited environment, whereby C. microsphaera-derived polysaccharides serve as the sole organic carbon source for heterotrophic bacteria which in turns facilitates bacteria-C. microsphaera aggregation. Additional analysis showed that bacterial populations capable of successive decomposing algal-derived organic matters dominated the cocultures, with the top five abundant genera of Brevundimonas (24.78%), Shinella (17.94%), Sphingopyxis (11.62%), Dongia (5.82%) and Hyphomicrobium (5.45%). These findings provide new insights into full understanding of microalgae-bacteria interactions and consequent microbial aggregation characteristics in aquatic ecosystems.
Show more [+] Less [-]Antithrombotic medication and endovascular interventions associated with short-term exposure to particulate air pollution: A nationwide case-crossover study Full text
2020
Scheers, Hans | Nawrot, Tim S. | Nemery, Benoit | De Troeyer, Katrien | Callens, Michael | De Smet, Frank | Nieuwenhuyse, An van | Casas, Lidia
Short-term exposure to air pollution has pro-thrombotic effects and triggers thrombo-embolic events such as myocardial infarction or stroke in adults. This study evaluates the association between short-term variation in air pollution and treatments for acute thrombo-embolic events among the whole Belgian population. In a bidirectional time-stratified case-crossover design, we included 227,861 events treated with endovascular intervention and 74,942 with antithrombotic enzymes that were reimbursed by the Belgian Social Security between January 1st, 2009 and December 31st, 2013. We compared the concentrations of particulate matter (PM) air pollution (PM₁₀ and PM₂.₅), as estimated at the municipality level on the day of the event (lag 0) and two days earlier (lag 1 and lag 2) with those of control days from the same month, matched by temperature and accounting for day of the week (weekend vs week days). We applied conditional logistic regression models to obtain odds ratios (OR) and their 95% CI for an increase of 10 μg/m³ (PM₁₀) or 5 μg/m³ (PM₂.₅) in pollutant concentrations over three lag days (lag 0, 1 and 2). We observed significant associations of PM₁₀ and PM₂.₅ with treatment of acute thrombo-embolic events at the three lags. The strongest associations were observed for air pollution concentrations on the day of the event (lag0). Increases of 10 μg/m³ PM₁₀ and 5 μg/m³ PM₂.₅ on lag0 increased the odds of events treated with endovascular intervention by 2.7% (95%CI:2.3%–3.2%) and 1.3% (95%CI:1%–1.5%), respectively, and they increased the odds of events treated with antithrombotic enzymes by 1.9% (95%CI:1.1–2.7%) and 1.2% (95%CI:0.7%–1.6%), respectively. The associations were generally stronger during autumn months and among children. Our nationwide study confirms that acute exposure to outdoor air pollutants such as PM₁₀ or PM₂.₅ increase the use of medication and interventions to treat thrombo-embolic events.
Show more [+] Less [-]Identification of the sources and influencing factors of potentially toxic elements accumulation in the soil from a typical karst region in Guangxi, Southwest China Full text
2020
Jia, Zhenyi | Wang, Junxiao | Zhou, Xiaodan | Su, San | Li, Yan | Li, Baojie | Zhou, Shenglu
Southwestern China contains the largest and most well-developed karst region in the world, and the potentially toxic elements (PTEs) content in the soils of the region is remarkably high. To explore the internal and external control factors and sources of soil PTEs enrichment in this area and to provide a basis for the treatment of PTE pollution, 113 soil samples were collected from Hengxian County, a karst region in Guangxi Province, southwestern China. The importance of eighteen influencing factors including parent material, weathering, physicochemical properties, topography and human activities were quantitatively analyzed by (partial) redundancy analysis. The sources of PTEs were identified using the Pb isotope ratio and absolute principal component score/multiple linear regression (APCS-MLR) model. The contents of all soil PTEs were higher than the corresponding background values of Guangxi soils. The contents in Cu, Zn, Cd, Hg and Pb were the highest in the soil from carbonate rock. The factor group of geological background and weathering explained 26.5% for the accumulation and distribution of soil PTEs and the influence of physicochemical properties was less than 2% but increased to 25.6% through interaction with weathering. Fe (47.1%), Al (42.1%), Mn (22%), chemical index of alteration (12.8%) and clay (11.9%) were the key factors affecting the soil PTEs, while the influence of human activities was weak. Pb isotope ratio and APCS-MLR classified 62.8–74% of soil PTEs as derived from natural sources, whereas 18.23% and 18.95% were derived from industrial activities and agricultural practice/traffic emissions, respectively. The Pb isotope ratio showed that the natural sources account for up to 90% of the Pb in the soil from carbonate rock, the highest contribution among the studied soils. The results of the study can provide background information on the soil PTEs contamination in the karst areas of China and other areas worldwide.
Show more [+] Less [-]Field survey of environmental estrogen pollution in the coastal area of Tokyo Bay and Nagasaki City using the Japanese common goby Acanthogobius flavimanus Full text
2020
Song, Jing | Nagae, Masaki | Takao, Yuji | Soyano, Kiyoshi
Endocrine disrupting chemicals (EDCs) are common pollutants in coastal waters. To investigate the estrogen risk of EDCs in the coastal areas of Japan, the Japanese common goby, which is a commonly observed species in these waters, was used as the target fish. Plasma 17β-estradiol (E₂) and vitellogenin (VTG) levels were analyzed and the gonads of fish collected from the Taira River (northern Nagasaki, reference site), Nagasaki Port, and two sites in Tokyo Bay were observed. Abnormal levels (>150 ng/mL, p < 0.05) of plasma VTG and high levels of plasma E₂ were detected in the fish from Nagasaki Port and Tokyo Bay, whereas the levels of both were low in the fish from the Taira River. The target EDCs, including natural estrogen [estrone (E₁), and E₂] and alkylphenols [4-t-octylphenol (4-t-OP), 4-nonylphenol (4-NP), and bisphenol-A (BPA)] in water samples were quantified using gas chromatography tandem mass spectrometry (GC/MS/MS), respectively. It was observed that the E₂-equivalent (EEQ) in Nagasaki Port and Tokyo Bay, which was calculated from the actual EDC measurement value, were almost 20- and 150-fold higher, respectively, than that at the reference site (Taira River, 0.021 ng/L). The EEQs mostly comprised natural estrogen in the sampling sites, although there was some influence of alkylphenols. There was an association between the EEQ and the E₂ in environmental water, suggesting a high estrogen risk in Japan coastal waters. Moreover, the results indicated that abnormal VTG synthesis was induced by environmental estrogen (EE) pollution in Nagasaki Port and Tokyo Bay.
Show more [+] Less [-]Cyanotoxin impact on microbial-mediated nitrogen transformations at the interface of sediment-water column in surface water bodies Full text
2020
Li, Hanyan | Hollstein, Marielle | Podder, Aditi | Gupta, Vedansh | Barber, Michael | Goel, Ramesh
Harmful cyanobacterial blooms produce lethal toxins in many aquatic ecosystems experiencing eutrophication. This manuscript presents results on the effects of cyanotoxins on the aerobic microbial communities residing at the interface of sediments and water columns with the ammonia-oxidizing bacteria (AOB) as the model microbial community. Microcystin-LR (MC-LR), a heavily researched cyanotoxin variant, was used as the model cyanotoxin. To measure cyanotoxin influence on the activity of nitrifying microbial communities, an enriched culture of AOBs collected from an ongoing partial nitrification-nitritation reactor was examined for its exposure to 1, 5 and 10 μg/L of MC-LR. The nitritation kinetics experiment demonstrated MC-LR’s ability at 1, 5, and 10 μg/L concentrations to prevent ammonium oxidation with statistically significant differences in nitritation rates between the blanks and spiked samples (One-way ANOVA, p < 0.05). Significantly decreased dissolved oxygen (DO) consumption during oxygen update batch tests demonstrated toxin’s influence on AOB’s oxidizing capabilities when exposed to even lower concentrations of 0.75, 0.5, and 0.25 μg/L of MC-LR in a separate set of experiments. Based on competitive kinetics, the MC-LR inhibition coefficient-the concentration needed to produce half-maximum inhibition of the mixed community AOBs was determined to be 0.083 μg/L. The stress tests proved the recovery of nitritation to some extent at lower MC-LR concentrations (1 and 5 μg/L), but significant irreversible inhibition was recorded when the AOB population was exposed to 10 μg/L MC-LR. The comparisons of amoA gene expressions corresponded well with nitrifying kinetics. All concentrations of MC-LR spiking were determined to produce a discernible impact on the AOB nitritation rate by either destroying the bacterial cell or immediately inhibiting the amoA gene expression.
Show more [+] Less [-]The occurrence and distribution of polycyclic aromatic hydrocarbons, bisphenol A and organophosphate flame retardants in indoor dust and soils from public open spaces: Implications for human exposure Full text
2020
Sánchez-Piñero, Joel | Bowerbank, Samantha L. | Moreda-Piñeiro, Jorge | López-Mahía, Purificación | Dean, John R.
Global concern exists regarding human exposure to organic pollutants derived from public open spaces and indoor dust. This study has evaluated the occurrence of 18 polycyclic aromatic hydrocarbons (PAHs), 11 organophosphorus flame retardants (OPFRs) and bisphenol A (BPA). To achieve this, a new simple, efficient and fast multi-residue analytical method based on a fully automated pressurised liquid extraction (PLE) and subsequent quantification by gas chromatography coupled to electron ionization-mass spectrometry (GC-EI-MS) in selected ion monitoring (SIM) mode was developed. The developed method was applied to indoor dust (12 sampling households) and soil derived from two public open spaces (POSs). Among all compounds studied, PAHs were the most ubiquitous contaminants detected in POS soils and indoor dust although some OPFRs and BPA were detected in lower concentrations. An assessment of the incremental lifetime cancer risk (ILCR) was done and indicated a high potential cancer risk from the POS sites and some of the indoor dust sampled sites. However, key variables, such as the actual exposure duration, frequency of contact and indoor cleaning protocols will significantly reduce the potential risk. Finally, the ingestion of soils and indoor dust contaminated with OPFRs and BPA was investigated and noted in almost all cases to be below the USEPA reference doses.
Show more [+] Less [-]Influence of Microcystis sp. and freshwater algae on pH: Changes in their growth associated with sediment Full text
2020
Acuña-Alonso, Carolina | Lorenzo, Olalla | Álvarez, Xana | Cancela, Ángeles | Valero, Enrique | Sanchez, Angel
Samples from two reservoirs with eutrophication problems, located in Pontevedra and Ourense (Northwestern Spain), were cultured, along with a third crop from a reservoir with no problems detected in Ourense (Northwestern Spain). The samples were grown under the same conditions (with an average temperature of 21 ± 2 °C, and a 3000 lux light intensity) in triplicate, and their growth, absorbance and pH were studied. High correlation values were obtained for pH and cellular growth (R² ≥ 95%). The water from Salas showed the greatest microalgal growth (0.15 × 10⁶ cells/ml to 31.70 × 10⁶ cells/ml of Microcystis sp. for the last day of culturing) and the greatest increase in pH (5.72–9.02). In all the cultures studied here, the main species that reproduced was Microcystis sp., which can produce neurotoxins and hepatotoxins. In addition, water samples were cultured with sediments of their own reservoir and with others to observe their evolution. The sediments studied in this case were rich in biotites, which can lead phosphate to be a limiting factor for phytoplankton due to the formation and sedimentation of insoluble salts of ferric phosphate. In crops grown with sediments from the Salas reservoir, actinobacteria developed which can inhibit microalgal growth. The study of the growth of cyanobacteria and possible methods of inhibiting them directly concerns the quality of water and its ecosystems, avoiding pollution and impact on ecosystems.
Show more [+] Less [-]