Refine search
Results 1431-1440 of 1,552
Comparison of two wild rodent species as sentinels of environmental contamination by mine tailings Full text
2012
Tovar-Sánchez, E. | Cervantes, L. T. | Martínez, C. | Rojas, E. | Valverde, M. | Ortiz-Hernández, M. L. | Mussali-Galante, P.
BACKGROUND: Contamination with heavy metals is among the most hazardous environmental concerns caused by mining activity. A valuable tool for monitoring these effects is the use of sentinel organisms. Particularly, small mammals living inside mine tailings are an excellent study system because their analysis represents a realistic approach of mixtures and concentrations of metal exposure. PURPOSE: We analyzed metal tissue concentrations and DNA damage levels for comparison between genders of a sentinel (Peromyscus melanophrys) and a nonsentinel (Baiomys musculus) species. Also, the relationship between DNA damage and the distance from the contamination source was evaluated. METHODS: This study was conducted in an abandoned mine tailing at Morelos, Mexico. Thirty-six individuals from both species at the exposed and reference sites were sampled. Metal concentrations in bone and liver of both species were analyzed by atomic absorption spectrophotometry, and DNA damage levels were assayed using the alkaline comet assay. RESULTS: In general, concentrations of zinc, nickel, iron, and manganese were statistically higher in exposed individuals. A significant effect of the organ and the site on all metal tissue concentrations was detected. Significant DNA damage levels were registered in the exposed group, being higher in B. musculus. Females registered higher DNA damage levels than males. A negative relationship between distance from the mine tailing and DNA damage in B. musculus was observed. CONCLUSIONS: We consider that B. musculus is a suitable species to assess environmental quality, especially for bioaccumulable pollutants—such as metals—and recommend that it may be considered as a sentinel species.
Show more [+] Less [-]Contribution of anthropogenic aerosols in direct radiative forcing and atmospheric heating rate over Delhi in the Indo-Gangetic Basin Full text
2012
Srivastava, Atul K. | Singh, Sachchidanand | Tiwari, S. | Bisht, D. S.
INTRODUCTION: The present work is aimed to understand direct radiation effects due to aerosols over Delhi in the Indo-Gangetic Basin (IGB) region, using detailed chemical analysis of surface measured aerosols during the year 2007. METHODS: An optically equivalent aerosol model was formulated on the basis of measured aerosol chemical compositions along with the ambient meteorological parameters to derive radiatively important aerosol optical parameters. The derived aerosol parameters were then used to estimate the aerosol direct radiative forcing at the top of the atmosphere, surface, and in the atmosphere. RESULTS: The anthropogenic components measured at Delhi were found to be contributing ∼72% to the composite aerosol optical depth (AOD0.5 ∼0.84). The estimated mean surface and atmospheric forcing for composite aerosols over Delhi were found to be about −69, −85, and −78 W m−2 and about +78, +98, and +79 W m−2 during the winter, summer, and post-monsoon periods, respectively. The anthropogenic aerosols contribute ∼90%, 53%, and 84% to the total aerosol surface forcing and ∼93%, 54%, and 88% to the total aerosol atmospheric forcing during the above respective periods. The mean (±SD) surface and atmospheric forcing for composite aerosols was about −79 (±15) and +87 (±26) W m−2 over Delhi with respective anthropogenic contributions of ∼71% and 75% during the overall period of observation. CONCLUSIONS: Aerosol induced large surface cooling, which was relatively higher during summer as compared to the winter suggesting an increase in dust loading over the station. The total atmospheric heating rate at Delhi averaged during the observation was found to be 2.42 ± 0.72 K day−1, of which the anthropogenic fraction contributed as much as ∼73%.
Show more [+] Less [-]The seasonal and spatial patterns of ingestion of polyfilament nylon fragments by estuarine drums (Sciaenidae) Full text
2012
Dantas, David V. | Barletta, Mario | da Costa, Monica Ferreira
INTRODUCTION: Artisanal fisheries in tropical estuaries are an important economic activity worldwide. However, gear (e.g. ropes, nets, buoys, crates) and vessels are often in use under dangerous conditions. Polyfilament nylon ropes are used until they are well beyond human and environmental safety limits. Severe wear and tear results in the contamination of the environment with micro-fragments. The spread of these fragments in the marine environment and their ingestion by the biota are documented in the scientific literature and are increasing concerns. The aim of this study was to evaluate the ingestion of plastic fragments by two fish (drum) species in relation to seasonal, habitat and fish size–class variation. MATERIALS AND METHODS: The stomach contents of 569 individuals of Stellifer brasiliensis and Stellifer stellifer from the main channel of the Goiana Estuary were examined to identify variation in the number and the weight of plastic fragments and relate this variation to differences among the seasons (early dry, late dry, early rainy and late rainy), the habitats within the estuary (upper, middle and lower) and the size classes of the fish (juveniles, sub-adults and adults). RESULTS: Plastic fragments were found in 7.9% of the individuals of these two drum species captured from December 2005 to August 2008. Nylon fragments occurred in 9.2% of S. stellifer and 6.9% of S. brasiliensis stomachs. The highest number of nylon fragments ingested was observed in adults during the late rainy season in the middle estuary. DISCUSSION: Blue polyfilament nylon ropes are used extensively in fisheries and can be lost, inappropriately discarded or damaged during use in the estuary. These fragments were the only type of plastic detected during this study. The ingestion of nylon fragments by fish probably occurred during the animals’ normal feeding activities. During the rainy season, the discharge of freshwater transports nylon fragments to the main channel and makes the fragments more available to fish. Fishery activities are responsible for a significant amount of the marine debris found in the estuary. CONCLUSIONS: The ingestion of fragments of nylon threads by fish is a demonstrated form of pollution in the Goiana Estuary. The physiological and toxicological consequences of the ingestion of this type of debris are unknown, as is the actual extent of the problem worldwide. The solutions to the problem are in the hands of authorities and communities alike because the good care and timely replacement of gear requires education, investment and effective policies.
Show more [+] Less [-]Influence of enumeration time periods on analyzing colonization features and taxonomic relatedness of periphytic ciliate communities using an artificial substratum for marine bioassessment Full text
2012
Zhang, Wei | Xu, Henglong | Jiang, Yong | Zhu, Mingzhuang | Al-Rasheid, Khaled A. S.
Colonization features and taxonomic relatedness measures of ciliate communities have been used as useful indicators for marine bioassessment. The influence of enumeration time periods on analyzing colonization features measures of periphytic ciliate communities was studied in coastal waters of the Yellow Sea, northern China, during the period of May–June 2010. Ciliated protozoan samples were collected at depths of 1 m using an artificial substratum and were analyzed with different enumeration schemes. The ciliate species were identified using living observation and silver impregnation. Data analyses were conducted using a range of multivariate statistical routines. Enumeration time periods represented a strong influence on analyzing both colonization and taxonomic relatedness features of periphytic ciliate communities, although no significant changes occurred in colonization patterns between two enumeration schemes (within 24 and 24–48 h after sampling). The delayed enumeration (within 24–48 h) may result in the species richness, individual abundance, colonization rate decreasing to standard errors of >10 % in samples with almost all colonization ages, and in the similarities of the communities being reduced to 11–38 %. However, the species biodiversity (e.g., species diversity and evenness, except species richness) and taxonomic relatedness (taxonomic diversity, taxonomic distinctness and average taxonomic distinctness, except variation in taxonomic distinctness) measures of periphytic ciliate communities were weakly sensitive to disturbance from the delayed enumeration, achieving standard errors of <10 and <5 % during the colonization periods, respectively. These results suggest that the enumeration should be completed as soon as possible within 24 h after sampling to analyze colonization and taxonomic relatedness features of periphytic ciliate communities, and that the species diversity and taxonomic distinctness measures can be used on a robust bioindicator with weak dependence on enumeration time limits for monitoring programs and ecological investigations in marine ecosystems.
Show more [+] Less [-]Ready biodegradability of trifluoromethylated phenothiazine drugs, structural elucidation of their aquatic transformation products, and identification of environmental risks studied by LC-MS n and QSAR Full text
2012
Trautwein, Christoph | Kümmerer, Klaus
The environmental fate of transformation products from organic pollutants such as drugs has become a new research area of increasing interest over the last few years. Whereas in the past mainly parent compounds or their major human metabolites were studied, new questions have arisen what compounds could be formed during incomplete degradation in the aquatic environment and what effects the resulting transformation products might have on nature and mankind. Psychiatric drugs are among the most important prescription drugs worldwide, but so far only little data is provided upon their degradation behavior. This especially accounts for tricyclic antipsychotic drugs of the phenothiazine class. Therefore, the degradation of such drugs was investigated in this study. In this study the aerobic Closed Bottle test (The Organisation for Economic Co-operation and Development (OECD) 301D) was used to assess the ready biodegradability of three trifluoromethylated phenothiazine drugs: fluphenazine, triflupromazine, and trifluoperazine. As it is known from literature that phenothiazine drugs can easily form various photolytic transformation products under light exposure, photochemical transformation was also investigated. Since transformation products are usually not available commercially, the calculation of environmental parameters with the aid of quantitative structure activity relationship (QSAR) software was used for first evaluation of these compounds. According to the OECD test guideline, all trifluoromethylated phenothiazines had to be classified as not readily biodegradable. Chromatographic data revealed the formation of some transformation products. Comparing retention time and mass spectrometric data with the analytical results of the light exposure experiments, we found peaks with the same retention time and mass spectra. So these transformation products were not of bacterial, but photolytic, origin and are formed very quickly even under low light doses. A special chromatographic column and solvent gradient along with multiple stage mass spectrometric fragmentation experiments uncovered the presence of, in total, nine photolytic transformation products and allowed for their structural elucidation. Typical modifications of the molecules were sulfoxidation, exocyclic N-oxidation, and transformation of the trifluoromethyl to a carboxylic moiety. The obtained results of the QSAR calculations show that all transformation products are highly mobile in the aquatic environment and elimination through biotic or abiotic pathways cannot be expected. Transformation products of trifluoromethylated phenothiazine drugs have to be expected in the aquatic environment, yet nothing is known about their toxicological properties. Therefore, further risk assessment upon these drugs and their fate is strongly recommended.
Show more [+] Less [-]Novel insights in Al-MCM-41 precursor as adsorbent for regulated haloacetic acids and nitrate from water Full text
2012
Bruzzoniti, Maria Concetta | De Carlo, Rosa Maria | Sarzanini, Corrado | Caldarola, Dario | Onida, Barbara
High concentration of NO 3 − in groundwater has raised concern over possible contamination of drinking water supplies. In addition, the formation of haloacetic acids (HAAs) as by-products during disinfection with chlorine-based agents is still a relevant issue, since HAAs pose serious health hazard. In this work, we investigated the affinity of a precursor of Al-MCM-41 (a mesostructured hexagonal aluminosilicate containing the template surfactant) towards nitrate and HAAs, for its possible application in the removal of these pollutants from natural and drinking waters. Additionally, adsorption kinetics and isotherms were studied. The adsorbent was synthesized using cetyltrimethylammonium bromide as surfactant and characterized by physico–chemical techniques. Simulated drinking water was spiked with the EPA-regulated HAAs (monochloroacetic (MCAA), monobromoacetic (MBAA), dichloroacetic (DCAA), dibromoacetic (DBAA), and trichloroacetic (TCAA) acids) and placed in contact with the adsorbent. The effect of matrix composition was studied. Adsorption kinetic studies were performed testing three kinetics models. For the adsorption studies, three adsorption isotherm approaches have been tested to experimental data. The pollutant recoveries were evaluated by suppressed ion chromatography. The affinity of the adsorbent was TCAA = DBAA = DCAA > MBAA > MCAA with DCAA, DBAA, and TCAA completely removed. A removal as high as 77 % was achieved for 13 mg/L nitrate. The adsorption isotherms of NO 3 − and monochloroacetic acid can be modeled by the Freundlich equation, while their adsorption kinetics follow a pseudo-second-order rate mechanism. The adsorbent exhibited high affinity towards HAAs in simulated drinking water even at relevant matrix concentrations, suggesting its potential application for water remediation technologies.
Show more [+] Less [-]Optimizing removal of ibuprofen from water by magnetic nanocomposite using Box–Behnken design Full text
2012
Singh, Kunwar P. | Singh, Arun K. | Singh, Uday Veer | Verma, Priyanka
PURPOSE: The present research aims to optimize the removal of ibuprofen (IBP), a non-steroidal anti-inflammatory, analgesic, and antipyretic drug from the aqueous solution using a synthesized magnetic carbon–iron nanocomposite, and to investigate the individual and combined effects of the independent process variables. METHOD: Combining the adsorptive capability of carbon and magnetic property of iron, a carbon–iron nanocomposite was synthesized. A four-factor Box–Behnken experimental design-based optimization modeling was performed for maximizing the removal of IBP from water by the nanocomposite using the batch experimental data. A quadratic model was built to predict the responses. Significance of the process variables and their interactions was tested by the analysis of variance and t test statistics. RESULTS: The experimental maximum removals of IBP from the aqueous solution by carbon and magnetic nanocomposite were 14.74% and 60.39%, respectively. The model predicted maximum removal of 65.81% under the optimum conditions of the independent variables (IBP concentration 80 mg/l; temperature 48°C; pH 2.50; dose 0.6 g/l) was very close to the experimental value (65.12 ± 0.92%). pH of the solution exhibited most significant effect on IBP adsorption. CONCLUSION: The developed magnetic nanocomposite was found superior than its precursor carbon exhibiting higher removal of IBP from the water and can be easily separated from the aqueous phase under temporary external magnetic field. The developed magnetic nanocomposite may be used for an efficient removal of IBP from the water.
Show more [+] Less [-]Metal contamination of soils and plants associated with the glass industry in North Central India: prospects of phytoremediation Full text
2012
Varun, Mayank | D’Souza, Rohan | Pratas, João | Paul, Manoj S.
INTRODUCTION: The effect of the glass industry on urban soil metal characterization was assessed in the area of Firozabad, India. A comprehensive profile of metal contamination was obtained in five zones each containing five specific sites. FINDINGS: Zn, Cd, and As showed a greater accumulation, whereas accumulation of Ni and Cu was high in limited samples. Positive correlation was found for the metal pairs Cu-Zn, Cu-Co, and Cu-Cr at P < 0.01. Moderate positive correlation was also observed between Zn-Co, Mn-Cd, Mn-As, Pb-As, and Ni-Cu at P < 0.05. Integrated contamination indices indicate that 60% of the sites were heavily contaminated while 28% were moderately contaminated. Phytoremedial potential of native flora (twenty herbs, three shrubs, and two grasses) was also assessed by analyzing their metal uptake. Individual elements displayed remarkably different patterns of accumulation in soils as well as in plants. Mn, Zn, Cu, and As were predominantly partitioned in shoots, Co and Cd in roots while Pb, Cr, and Ni almost equally between shoots and roots. Most plants exhibited capabilities in mobilizing Co, Pb, Cr, and Ni in the root zone. CONCLUSION: Potential phytoextractors include Datura stramonium and Chenopodium murale while phytostabilizers include Calotropis procera and Gnaphalium luteo-album. Poa annua showed potential in both categories. None of the species showed phytoremedial potential for Co and Ni.
Show more [+] Less [-]The effects of cerium on the growth and some antioxidant metabolisms in rice seedlings Full text
2012
Liu, Dongwu | Wang, Xue | Lin, Yousheng | Chen, Zhiwei | Xu, Hongzhi | Wang, Lina
INTRODUCTION: The aims of the present study are to investigate the effects of Ce3+ on the growth and some antioxidant metabolisms in rice seedlings (Oryza sativa L. cv Shengdao 16). MATERIALS AND METHODS: The rice was treated with 0, 0.05, 0.1, 0.5, 1.0, and 1.5 mM Ce3+, respectively. The growth index of rice was measured. The chlorophyll content; catalase, superoxide dismutase, and peroxidase activities; and the level of hydrogen peroxide (H2O2), superoxide anion (O 2 ·− ), and malondialdehyde were assayed. The accumulation of Ce3+ and the uptake of mineral nutrition elements were analyzed with ICP-SF-MS. RESULTS AND DISCUSSION: Hormetic effects of Ce3+ on the growth and some antioxidant metabolisms were found in the roots and shoots of rice. The roots can accumulate a much higher content of Ce3+ than shoots and Ce3+ mainly located in the cell wall of roots. Moreover, the uptake of K, Mg, Ca, Na, Fe, Mn, Zn, Cu, and Mo in the roots and shoots was affected with the exposure of different Ce3+ treatments, which indicated that Ce3+ affected the nutritional status of roots and shoots and further affected the growth of rice. CONCLUSION: The appropriate amount of Ce3+ improved the defense system and growth of rice. The roots can accumulate a much higher content of Ce3+ than shoots. Moreover, the uptake of K, Mg, Ca, Na, Fe, Mn, Zn, Cu, and Mo in the roots and shoots was affected with the exposure of different Ce3+ treatments.
Show more [+] Less [-]Acute toxicity tests with Daphnia magna, Americamysis bahia, Chironomus riparius and Gammarus pulex and implications of new EU requirements for the aquatic effect assessment of insecticides Full text
2012
Brock, Theo C. M. | Van Wijngaarden, René P. A.
Threshold concentrations for treatment related effects of 31 insecticides, as derived from aquatic micro-/mesocosm tests, were used to calibrate the predictive value of the European Tier-1 acute effect assessment on basis of laboratory toxicity tests with Daphnia magna, Chironomus spp., Americamysis bahia and Gammarus pulex. The acute Tier-1 effect assessment on basis of Daphnia (EC50/100) overall was protective for organophosphates, carbamates and most pyrethroids but not for neonicotinoids and the majority of insect growth regulators (IGRs) in the database. By including the 28-day water-spiked Chironomus riparius test, the effect assessment improves but selecting the lowest value on basis of the 48-h Daphnia test (EC50/100) and the 28-day Chironomus test (NOEC/10) is not fully protective for 4 out of 23 insecticide cases. An assessment on basis of G. pulex (EC50/100) is sufficiently protective for 15 out of 19 insecticide cases. The Tier-1 procedure on basis of acute toxicity data (EC50/100) for the combination of Daphnia and A. bahia and/or Chironomus (new EU dossier requirements currently under discussion) overall is protective to pulsed insecticide exposures in micro-/mesocosms. For IGRs that affect moulting, the effect assessment on basis of the 48-h Chironomus test (EC50/100) may not always be protective enough to replace that of the water-spiked 28-day C. riparius test (NOEC/10) because of latency of effects.
Show more [+] Less [-]