Refine search
Results 1431-1440 of 1,953
Exposure of Brassica juncea (L) to arsenic species in hydroponic medium: comparative analysis in accumulation and biochemical and transcriptional alterations
2013
Ahmad, Mohd Anwar | Gupta, Meetu
Arsenic (As) contamination in the environment has attracted considerable attention worldwide. The objective of the present study was to see the comparative effect of As species As(III) and As(V) on accumulation, biochemical responses, and gene expression analysis in Brassica juncea var. Pusa Jaganath (PJn). Hydroponically grown 14-day-old seedlings of B. juncea were treated with different concentrations of As(III) and As(V). Accumulation of total As increased with increasing concentration of both As species and exposure time, mainly in roots. Reduction in seed germination, root–shoot length, chlorophyll, and protein content were observed with increasing concentration and exposure time of both As species, being more in As(III)-treated leaves. PJn variety showed that antioxidant enzymes (superoxide dismutase (SOD), catalase (CAT), and ascorbate peroxidase (APX)) and stress-related parameters (cysteine, proline, and malondialdehyde (MDA)) were stimulated and allows plant to tolerate both As species. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis in leaves showed significant changes in protein profile with more stringent effect with As(III) stress. Semiquantitative RT-PCR analysis showed regulation in expression of phytochelatin synthase (PCS), metallothionine-2 (MT-2), glutathione reductase (GR), and glutathione synthetase (GS) genes under both As(III) and As(V) stresses. Results suggested that accumulation and inhibition on physiological parameters differ according to the As species, while molecular and biochemical parameters showed a combinatorial type of tolerance mechanism against As(III) and As(V) stresses.
Show more [+] Less [-]Elucidation of lead-induced oxidative stress in Talinum triangulare roots by analysis of antioxidant responses and DNA damage at cellular level
2013
Abhay Kumar, | Prasad, M. N. V. | Mohan Murali Achary, V. | Panda, Brahma B.
Hydroponic experiments were performed with Talinum triangulare (Jacq.) Willd. focusing the root cellular biochemistry with special emphasis on DNA damage, structural, and elemental analyses in Pb(NO₃)₂exposed with 0, 0.25, 0.5, 0.75, 1.0, and 1.25 mM for 7 days. Lead (Pb) increased reactive oxygen species production, lipid peroxidation, protein oxidation, cell death, and DNA damage and decreased the protein content in a dose-dependent manner. Likewise, a dose-dependent induction of antioxidative enzymes superoxide dismutase and catalase by Pb was evident. Ascorbate peroxidase on the other hand responded biphasically to Pb treatments by showing induction at low (0.25 and 0.50) and repression at high (0.75–1.25 mM) concentrations. The estimation of proline content also indicated a similar biphasic trend. Scanning electron microscope and energy-dispersive X-ray spectroscopy analysis showed that 1.25 mM Pb treatment resulted in ultrastructural modifications in roots and stem tissue that was marked by the change in the elemental profile. The findings pointed to the role of oxidative stress in the underlying Pb phytotoxicity and genotoxicity in T. triangulare.
Show more [+] Less [-]Acidic pharmaceuticals in domestic wastewater and receiving water from hyper-urbanization city of China (Shanghai): environmental release and ecological risk
2013
Duan, Yan-Ping | Meng, Xiang-Zhou | Wen, Zhi-Hao | Chen, Ling
The occurrence, behavior, and release of five acidic pharmaceuticals, including ibuprofen (IBP), naproxen (NPX), ketoprofen (KEP), diclofenac (DFC), and clofibric acid (CA), have been investigated along the different units in a tertiary-level domestic wastewater treatment plant (WWTP) in hyper-urbanization city of China (Shanghai). IBP was the most abundant chemicals among the measured in raw wastewater. The loads of the acidic pharmaceuticals in the WWTP influent ranged from 7.5 to 414 mg/day/1,000 inh, which were lower than those reported in the developed countries suggesting a less per capita consumption of pharmaceuticals in Shanghai. IBP obtained by highest removal (87 %); NPX and KEP were also significantly removed (69–76 %). However, DFC and CA were only moderately removed by 37–53 %, respectively. Biodegradation seemed to play a key role in the elimination of the studied pharmaceuticals except for DFC and CA. An annual release of acidic pharmaceuticals was estimated at 1,499 and 61.7 kg/year through wastewater and sludge, respectively, from Shanghai. Highest pharmaceuticals concentrations were detected in the effluent discharge point of the WWTP, indicating that WWTP effluent is the main source of the acidic pharmaceuticals to its receiving river. Preliminary results indicated that only DFC in river had a high risk to aquatic organisms. Nevertheless, the joint toxicity effects of these chemicals are needed to further investigate.
Show more [+] Less [-]Acetylcholinesterase in honey bees (Apis mellifera) exposed to neonicotinoids, atrazine and glyphosate: laboratory and field experiments
2013
Boily, Monique | Sarrasin, Benoit | DeBlois, Christian | Aras, Philippe | Chagnon, Madeleine
In Québec, as observed globally, abnormally high honey bee mortality rates have been reported recently. Several potential contributing factors have been identified, and exposure to pesticides is of increasing concern. In maize fields, foraging bees are exposed to residual concentrations of insecticides such as neonicotinoids used for seed coating. Highly toxic to bees, neonicotinoids are also reported to increase AChE activity in other invertebrates exposed to sub-lethal doses. The purpose of this study was therefore to test if the honey bee’s AChE activity could be altered by neonicotinoid compounds and to explore possible effects of other common products used in maize fields: atrazine and glyphosate. One week prior to pollen shedding, beehives were placed near three different field types: certified organically grown maize, conventionally grown maize or non-cultivated. At the same time, caged bees were exposed to increasing sub-lethal doses of neonicotinoid insecticides (imidacloprid and clothianidin) and herbicides (atrazine and glyphosate) under controlled conditions. While increased AChE activity was found in all fields after 2 weeks of exposure, bees close to conventional maize crops showed values higher than those in both organic maize fields and non-cultivated areas. In caged bees, AChE activity increased in response to neonicotinoids, and a slight decrease was observed by glyphosate. These results are discussed with regard to AChE activity as a potential biomarker of exposure for neonicotinoids.
Show more [+] Less [-]Sources of fluorescent dissolved organic matter in high salinity seawater (Bohai Bay, China)
2013
Chen, Hao | Zheng, Binghui
Fluorescent dissolved organic matter (FDOM) identified in coastal waters within a large salinity range had been widely reported in previous studies, which stated that conservative mixing of terrestrially derived and river-transported FDOM by clear seawaters could account for the relatively low FDOM fluorescence signals in high salinity seawaters. This study aimed at testing the conservative mixing model in high salinity seawaters in a shallow bay (Bohai Bay, China) with low river flow in a dry season. The water showed high salinities varying in a narrow range (30.52 − 2.07), and salinity effects on fluorescence quantum yields therefore less likely introduced complications to fluorescence data analyses. By applying a parallel factor analysis to fluorescence excitation emission matrices of the water samples, we identified a tyrosine-like FDOM component, a tryptophan-like FDOM component, and two humic substances-like FDOM components. Based on a theoretical analysis, we found that dissolved organic carbon concentrations and suspended solid concentrations of the bulk-water samples as well as the maximum fluorescence signals of each identified FDOM component showed spatial distributions that could not be accounted for by the conservative mixing model. Marine autochthonous processes including microbial activities and FDOM releasing from resuspended sediment were likely to be invoked.
Show more [+] Less [-]Levels of black carbon and their relationship with particle number levels—observation at an urban roadside in Taipei City
2013
Cheng, Yu-Hsiang | Shiu, Ben-Tzung | Lin, Meng-Hsien | Yan, Jhih-Wei
Information on the relationship between black carbon (BC) and particle number levels in urban areas is limited. Therefore, investigating the relationship between BC and particle number levels in different particle size ranges at an urban area is worthwhile. This study used an aethalometer and scanning mobility particle sizer to measure the levels of BC and particle number simultaneously at an urban roadside in Taipei City. Measurement results show that hourly BC levels are 0.62–8.80 μg m⁻³ (mean = 3.50 μg m⁻³) and hourly particle number levels are 4.21 × 10³–4.64 × 10⁴ particles cm⁻³ (mean = 2.00 × 10⁴ particles cm⁻³) in Taipei urban area. The BC and particle number levels peak during morning (7:00–9:00) and evening (16:00–18:00) rush hours on weekdays. Low BC and particle number levels exist in the early morning hours. Time variations in BC levels are the same as those of particle number levels in this study, clearly indicating that BC and particles are likely released from the same emission source. Additionally, BC levels in the urban area are more strongly associated with ultrafine particle levels than with total particle number levels, particularly in the size range of 56–180 nm. According to measurement results, most BC in aerosols in urban areas can be in the ultrafine size range.
Show more [+] Less [-]Quantitative and qualitative characteristics of dissolved organic matter from eight dominant aquatic macrophytes in Lake Dianchi, China
2013
Qu, Xiaoxia | Xie, Li | Lin, Ying | Bai, Yingchen | Zhu, Yuanrong | Xie, Fazhi | Giesy, John P. | Wu, Fengchang
The aim of this research was to determine and compare the quantitative and qualitative characteristics of dissolved organic matters (DOM) from eight aquatic macrophytes in a eutrophic lake. C, H, N, and P in ground dry leaves and C, N, and P in DOM of the species were determined, and C/N, C/P, C/H, DOC/C, TDN/N, TDP/P, DOC/TDN, and DOC/TDP were calculated. Chemical structures of the DOM were characterized by the use of multiple techniques including UV-visible, FT-IR, and (13)C CP/MAS spectra. The results showed subtle differences in quantity and quality of DOM among species and life-forms. Except oriental pepper which had a C/H of 0.7, C/H of all the other species was 0.6. C/N and C/P of ground leaves was 10.5-17.3 and 79.4-225.3, respectively, which were greater in floating and submerged species than in the others. Parrot feather also had a small C/P (102.8). DOC/C, TDN/N, and TDP/P were 7.6-16.8, 5.5-22.6, and 22.9-45.6 %, respectively. Except C/N in emergent and riparian species, C/N in the other species and C/P in all the species were lower in their DOM than in the ground leaves. DOM of the macrophytes had a SUVA254 value of 0.83-1.80. The FT-IR and (13)C NMR spectra indicated that the DOM mainly contained polysaccharides and/or amino acids/proteins. Percent of carbohydrates in the DOM was 37.3-66.5 % and was highest in parrot feather (66.5 %) and crofton weed (61.5 %). DOM of water hyacinth, water lettuce, and sago pondweed may have the greatest content of proteins. Aromaticity of the DOM was from 6.9 % in water lettuce to 17.8 % in oriental pepper. DOM of the macrophytes was also different in polarity and percent of Ar-OH. Distinguished characteristics in quantity and quality of the macrophyte-derived DOM may induce unique environmental consequences in the lake systems.
Show more [+] Less [-]5-Aminolevulinic acid ameliorates cadmium-induced morphological, biochemical, and ultrastructural changes in seedlings of oilseed rape
2013
Baṣārat Alī, Es. | Huang, C. R. | Qi, Z. Y. | Ali, Shafaqat | Daud, M. K. | Geng, X. X. | Liu, H. B. | Zhou, W. J.
Due to its prolific growth, oilseed rape (Brassica napus L.) can be grown successfully for phytoremediation of cadmium (Cd)-contaminated soils. Nowadays, use of plant growth regulators against heavy metals stress is one of the major objectives of researchers. The present study evaluates the ameliorate effects of 5-aminolevulinic acid (ALA, 0, 0.4, 2, and 10 mg/l) on the growth of oilseed rape (B. napus L. cv. ZS 758) seedlings under Cd stress (0, 100, and 500 μM). Results have shown that Cd stress hampered the seedling growth by decreasing the radical and hypocotyls length, shoot and root biomass, chlorophyll content, and antioxidants enzymes. On the other hand, Cd stress increased the level of malondialdehyde (MDA) and production of H2O2 and accumulation of Cd in the shoots. The microscopic study of leaf mesophyll cells showed that toxicity of Cd totally destroyed the whole cell structure, and accumulation of Cd also appeared in micrographs. Application of ALA at lower dosage (2 mg/l) enhanced the seedling growth and biomass. The results showed that 2 mg/l ALA significantly improved chlorophyll content under Cd stress and decreased the level of Cd contents in shoots. Application of ALA reduced the MDA and H2O2 levels in the cotyledons. The antioxidants enzymes (ascorbate peroxidase, peroxidase, catalase, glutathione reductase, and superoxide dismutase) enhanced their activities significantly with the application of 2 mg/l ALA under Cd stress. This study also indicated that higher dosage of ALA (10 mg/l) imposed the negative effect on the growth of oilseed rape. Microscopic study showed that application of ALA alleviated the toxic effects of Cd in the mesophyll cell and improved the cell structure. Use of 2 mg/l ALA under 500 μM Cd was found to be more effective, and under this dosage, cell structure was clear, with obvious cell wall and cell membrane as well as a big nucleus, which was found with well-developed two or more nucleoli. Chloroplast was almost round in shape and contained thylakoids membranes and grana, but starch grains were not found in chloroplast comparatively to other treatments. On the basis of our results, we can conclude that ALA has a promotive effect which could improve plant survival under Cd stress.
Show more [+] Less [-]Effect of ethylenediamine-N,N′-disuccinic acid on Fenton and photo-Fenton processes using goethite as an iron source: optimization of parameters for bisphenol A degradation
2013
Huang, Wenyu | Brigante, Marcello | Wu, Feng | Hanna, Khalil | Mailhot, Gilles
The main disadvantage of using iron mineral in Fenton-like reactions is that the decomposition rate of organic contaminants is slower than in classic Fenton reaction using ferrous ions at acidic pH. In order to overcome these drawbacks of the Fenton process, chelating agents have been used in the investigation of Fenton heterogeneous reaction with some Fe-bearing minerals. In this work, the effect of new iron complexing agent, ethylenediamine-N,N'-disuccinic acid (EDDS), on heterogeneous Fenton and photo-Fenton system using goethite as an iron source was tested at circumneutral pH. Batch experiments including adsorption of EDDS and bisphenol A (BPA) on goethite, H₂O₂ decomposition, dissolved iron measurement, and BPA degradation were conducted. The effects of pH, H₂O₂ concentration, EDDS concentration, and goethite dose were studied, and the production of hydroxyl radical (•OH) was detected. The addition of EDDS inhibited the heterogeneous Fenton degradation of BPA but also the formation of •OH. The presence of EDDS decreases the reactivity of goethite toward H₂O₂ because EDDS adsorbs strongly onto the goethite surface and alters catalytic sites. However, the addition of EDDS can improve the heterogeneous photo-Fenton degradation of BPA through the propagation into homogeneous reaction and formation of photochemically efficient Fe-EDDS complex. The overall effect of EDDS is dependent on the H₂O₂ and EDDS concentrations and pH value. The high performance observed at pH 6.2 could be explained by the ability of O ₂ •⁻ to generate Fe(II) species from Fe(III) reduction. Low concentrations of H₂O₂ (0.1 mM) and EDDS (0.1 mM) were required as optimal conditions for complete BPA removal. These findings regarding the capability of EDDS/goethite system to promote heterogeneous photo-Fenton oxidation have important practical implications for water treatment technologies.
Show more [+] Less [-]Characteristics of nano-/ultrafine particle-bound PAHs in ambient air at an international airport
2013
Lai, Chia-Hsiang | Chuang, Kuen-Yuan | Chang, Jin-Wei
Concentrations of 22 polycyclic aromatic hydrocarbons (PAHs) were estimated for individual particle-size distributions at the airport apron of the Taipei International Airport, Taiwan, on 48 days in July, September, October, and December of 2011. In total, 672 integrated air samples were collected using a micro-orifice uniform deposition impactor (MOUDI) and a nano-MOUDI. Particle-bound PAHs (P-PAHs) were analyzed by gas chromatography with mass selective detector (GC/MSD). The five most abundant species of P-PAHs on all sampling days were naphthalene (NaP), phenanthrene (PA), fluoranthene (FL), acenaphthene (AcP), and pyrene (Pyr). Total P-PAHs concentrations were 152.21, 184.83, and 188.94 ng/m³ in summer, autumn, and winter, respectively. On average, the most abundant fractions of benzo[a]pyrene equivalent concentration (BaPeq) in different molecular weights were high-weight PAHs (79.29 %), followed by medium-weight PAHs (11.57 %) and low-weight PAHs (9.14 %). The mean BaPeq concentrations were 1.25 and 0.94 (ng/m³) in ultrafine particles (<0.1 μm) and nano-particles (<0.032 μm), respectively. The percentages of total BaPeq in nano- and ultrafine particulate size ranges were 52.4 % and 70.15 %, respectively.
Show more [+] Less [-]