Refine search
Results 1431-1440 of 4,921
Ultra-trace level determination of neonicotinoids in honey as a tool for assessing environmental contamination
2019
Kammoun, Souad | Mulhauser, Blaise | Aebi, Alexandre | Mitchell, Edward A.D. | Glauser, Gaétan
Neonicotinoids and the closely related insecticide classes sulfoximines and butenolides have recently attracted growing concerns regarding their potential negative effects on non-target organisms, including pollinators such as bees. Indeed, it is becoming increasingly clear that these effects may occur at much lower levels than those considered to be safe for humans. To properly assess the ecological and environmental risks posed by neonicotinoids, appropriate sampling and analytical procedures are needed. Here, we used honey as reliable environmental sampler and developed an unprecedentedly sensitive method based on QuEChERS and UHPLC-MS/MS for the simultaneous determination of the nine neonicotinoids and related molecules currently present on the market (acetamiprid, clothianidin, dinotefuran, flupyradifurone, imidacloprid, nitenpyram, sulfoxaflor, thiacloprid and thiamethoxam). The method was validated and provided excellent levels of precision and accuracy over a wide concentration range of 3–4 orders of magnitude. Lowest limits of quantification (LLOQs) as low as 2–20 pg/g of honey depending on the analytes were reached. The method was then applied to the analysis of 36 honey samples from various regions of the World which had already been analysed for the five most common neonicotinoids (acetamiprid, clothianidin, imidacloprid, thiacloprid and thiamethoxam) in a previous study. This allowed us to determine the long-term stability (i.e. up to 40 months) of these molecules in honey, both at room temperature and −20 °C. We found that the five pesticides were stable over a period of several years at −20 °C, but that acetamiprid and thiacloprid partially degraded at room temperature. Finally, we also measured the levels of dinotefuran, nitenpyram, sulfoxaflor and flupyradifurone and found that 28% of the samples were contaminated by at least one of these pesticides.
Show more [+] Less [-]Prediction of organic contaminant uptake by plants: Modified partition-limited model based on a sequential ultrasonic extraction procedure
2019
Wu, Xiang | Zhu, Lizhong
Predicting the translocation of organic contaminants to plants is crucial to ensure the quality of agricultural goods and assess the risk of human exposure through the food web. In this study, the performance of a modified plant uptake model was evaluated considering a number of chemicals, such as polycyclic aromatic hydrocarbons (PAHs), organochlorine pesticides (OCPs) and polybrominated diphenyl ethers (PBDEs), with a range of physicochemical properties; different plant species (Ipomoea aquatica Forsk (swamp morning glory), Chrysanthemum coronarium L. (crown daisy), Zea mays L. (corn), Brassica rapa pekinensis (Chinese cabbage), Cucurbita moschata (pumpkin), Raphanus sativus L. (radish), Spinacia oleracea L. (spinach) and Capsicum annuum L. (pepper)); and different types of soil (paddy soil, laterite soil and black soil). The biases of predictions from a previously used partition-limited model were −76.4% to −99.9% relative to the measured concentrations. An overall transmission factor (αtf=0.39), calculated from a linear regression of the measured bioavailable fraction (Cbᵢₒ) and the total concentration in plants, was considered a crucial modification and was included in the modified model. Cbᵢₒ was found to better represent the chemical content available in soil for root uptake. The results from this study improve the accuracy of predictions for vegetation-uptake assessments by modifying the partition-limited model and then validating the modified model using comparisons between predicted data and measured values. The accuracy of the concentrations of organic contaminants in plants improved: when using the modified model, 89.5% of the predictions were within 40% of the actual value. The average bias was limited to 1.5%–30.5%. The model showed great potential to predict plant uptake using the bioavailable fraction concentration in soil.
Show more [+] Less [-]Urinary metals and leukocyte telomere length in American Indian communities: The Strong Heart and the Strong Heart Family Study
2019
Grau-Perez, Maria | Zhao, Jinying | Pierce, Brandon | Francesconi, Kevin A. | Goessler, Walter | Zhu, Yun | An, Qiang | Umans, Jason | Best, Lyle | Cole, Shelley A. | Navas-Acien, Ana | Tellez-Plaza, Maria
While several mechanisms may explain metal-related health effects, the exact cellular processes are not fully understood. We evaluated the association between leukocyte telomere length (LTL) and urine arsenic (ΣAs), cadmium (Cd) and tungsten (W) exposure in the Strong Heart Study (SHS, N = 1702) and in the Strong Heart Family Study (SHFS, N = 1793).Urine metal concentrations were measured using ICP-MS. Arsenic exposure was assessed as the sum of inorganic arsenic, monomethylarsonate and dimethylarsinate levels (ΣAs). LTL was measured by quantitative polymerase chain reaction.In the SHS, median levels were 1.09 for LTL, and 8.8, 1.01 and 0.11 μg/g creatinine for ΣAs, Cd, and W, respectively. In the SHFS, median levels were 1.01 for LTL, and 4.3, 0.44, and 0.10 μg/g creatinine. Among SHS participants, increased urine ΣAs, Cd, and W was associated with shorter LTL. The adjusted geometric mean ratio (95% confidence interval) of LTL per an increase equal to the difference between the percentiles 90th and 10th in metal distributions was 0.85 (0.79, 0.92) for ΣAs, 0.91 (0.84, 1.00) for Cd and 0.93 (0.88, 0.98) for W. We observed no significant associations among SHFS participants. The findings also suggest that the association between arsenic and LTL might be differential depending on the exposure levels or age.Additional research is needed to confirm the association between metal exposures and telomere length.
Show more [+] Less [-]Bacterial shifts during in-situ mineralization bio-treatment to non-ferrous metal(loid) tailings
2019
Liu, Jian-li | Yao, Jun | Duran, Robert | Mihucz, Victor G. | Hudson-Edwards, K. A. (Karen A.)
Nonferrous mine tailings have caused serious problems of co-contamination with metal(loid)s. It is still a global challenge to cost-effectively manage and mitigate the effect of the mining wastes. We conducted an in-situ bio-treatment of non-ferrous metal(loid) tailings using a microbial consortium of sulfate reducing bacteria (SRB). During the bio-treatment, the transformation of metal(loid)s (such as Cu, Fe, Mn, Pb, Sb, and Zn) into oxidizable and residual fractions in the subsurface tended to be higher than that observed in the surface. As well the mineral compositions changed becoming more complex, indicating that the sulfur reducing process of bio-treatment shaped the bio-transformation of metal(loid)s. The added SRB genera, especially Desulfotomaculum genus, colonized the tailings suggesting the coalescence of SRB consortia with indigenous communities of tailings. Such observation provides new insights for understanding the functional microbial community coalescence applied to bio-treatment. PICRUSt analysis revealed presence of genes involved in sulfate reduction, both assimilatory and dissimilatory. The potential for the utilization of both inorganic and organic sulfur compounds as S source, as well as the presence of sulfite oxidation genes indicated that SRB play an important role in the transformation of metal(loid)s. We advocate that the management of microorganisms involved in S-cycle is of paramount importance for the in situ bio-treatment of tailings, which provide new insights for the implementation of bio-treatments for mitigating the effect of tailings.
Show more [+] Less [-]Molecular modeling and MD-simulation studies: Fast and reliable tool to study the role of low-redox bacterial laccases in the decolorization of various commercial dyes
2019
Ahlawat, Shruti | Singh, Deepti | Virdi, Jugsharan Singh | Sharma, Krishna Kant
Synthetic dyes are toxic and carcinogenic in nature, which also causes environmental pollution. The present study was aimed to decolorize various commercial dyes using purified recombinant bacterial laccases. Laccase gene from Yersinia enterocolitica strain 8081 (yacK), Y. enterocolitica strain 7 (yacK) and Bacillus pumilus DSKK1 was cloned in vector pET28a and overproduced in host Escherichia coli BL21. The high yield of recombinant laccase protein resulted in the formation of inclusion bodies, which were further solubilized, refolded, and purified. The purified recombinant laccases were alkali-tolerant and thermostable, with pH optima at 7–8, temperature optima at 60–70 °C and low redox potential. For in silico studies, laccase protein models of B. pumilus DSKK1, Y. enterocolitica strain 7 and Y. enterocolitica strain 8081 were docked with commercial dyes. This is the first and foremost study where the stability of docked complexes of pathogenic and non-pathogenic microorganism has been explored via molecular dynamics (MD) simulations using Gromacs version 4.5.5 with the gromos96 43a force field. Finally, the in silico results were validated experimentally and it was found that purified laccases from B. pumilus DSKK1 and Y. enterocolitica strain 7 efficiently decolorized rose bengal (90.4%), malachite green (77.7%), and congo red (74.5%) dyes.
Show more [+] Less [-]Marine vs freshwater microalgae exopolymers as biosolutions to microplastics pollution
2019
Cunha, César | Faria, Marisa | Nogueira, Natacha | Ferreira, Artur | Cordeiro, Nereida
Microalgae can excrete exopolymer substances (EPS) with a potential to form hetero-aggregates with microplastic particles. In this work, two freshwater (Microcystis panniformis and Scenedesmus sp.) and two marine (Tetraselmis sp. and Gloeocapsa sp.) EPS producing microalgae were exposed to different microplastics. In this study, the influence of the microplastic particles type, size and density in the production of EPS and hetero-aggregates potential was studied. Most microalgae contaminated with microplastics displayed a cell abundance decrease (of up to 42%) in the cultures. The results showed that the formed aggregates were composed of microalgae and EPS (homo-aggregates) or a combination of microalgae, EPS and microplastics (hetero-aggregates). The hetero-aggregation was dependent on the size and yield production of EPS, which was species specific. Microcystis panniformis and Scenedesmus sp. exhibited small EPS, with a higher propension to disaggregate, and consequently lower capabilities to aggregate microplastics. Tetraselmis sp. displayed a higher ability to aggregate both low and high-density microplastics, being partially limited by the size of the microplastics. Gloeocapsa sp. had an outstanding EPS production and presented excellent microplastic aggregation capabilities (adhered onto the surface and also incorporated into the EPS). The results highlight the potential of microalgae to produce EPS and flocculate microplastics, contributing to their vertical transport and consequent deposition. Thus, this work shows the potential of microalgae as biocompatible solutions to water microplastics treatment.
Show more [+] Less [-]Dust provenance in Pan-third pole modern glacierized regions: What is the regional source?
2019
Du, Zhiheng | Xiao, Cunde | Wang, Yuzhe | Liu, Shiwei | Li, Shutong
To differentiate the source of aeolian dust between the desert sources from Pan-third pole and high mountain glaciers, therefore, we investigated the spatial variability of aeolian dust sources in the Pan-third polar region. The question of whether such changes reflect variable transport pathways from a unique source in the western China area was addressed. That is, the SrNd radiogenic isotope composition of modern desert samples do not support the hypothesis of a single dust provenance at higher elevation mountain glaciers by long-distance transport; regional sources also play a significant role. Based on previous studies and the data from this study, the five isotopic regions were divided, which are controlled by the geological characteristics in western China. The results suggest that mineral dust deposited into the high-mountain glaciers originated from the free ice region because of glacier melting and the physical and chemical erosion of rocks from the surrounding mountains by local wind systems. The Pb isotopic data further demonstrated that natural dust is the source of Pb for the high-mountain glaciers of Pan-third pole. These results provide an exhaustive documentation of the isotopic signature of the regional dust reaching the glacier regions.
Show more [+] Less [-]Occurrence of neonicotinoids and fipronil in estuaries and their potential risks to aquatic invertebrates
2019
Hano, Takeshi | Ito, Katsutoshi | Ohkubo, Nobuyuki | Sakaji, Hideo | Watanabe, Akio | Takashima, Kei | Satō, Taku | Sugaya, Takuma | Matsuki, Kosuke | Onduka, Toshimitsu | Ito, Mana | Somiya, Rei | Mochida, Kazuhiko
This study aimed to evaluate and qualify field-based potential risks of seven neonicotinoid and phenylpyrazole (fipronil) insecticides on aquatic invertebrates, including estuary-resident marine crustaceans. One hundred and ninety-three estuarine water samples, with salinity ranging from 0.5 to 32.7, were collected from four estuarine sites in the Seto Inland Sea of Japan, in 2015–2018 and the insecticide levels were measured. Five neonicotinoid and fipronil insecticides were successfully identified, and their occurrence varied temporally. Marine crustaceans were simultaneously harvested every month from one of the estuarine water sampling sites in 2015–2017. Three predominant crustacean species, kuruma prawn (Penaeus japonicus), sand shrimp (Crangon uritai), and mysid (Neomysis awatschensis), were captured and their seasonal presence was species independent. A 96-h laboratory toxicity study with the insecticides using kuruma prawn, sand shrimp, and a surrogate mysid species (Americamysis bahia) indicated that fipronil exerted the highest toxicity to the three crustaceans. Using both toxicity data and insecticide occurrence in estuarine water (salinity ≥10, n = 169), the potential risks on the three marine crustaceans were quantified by calculating the proportion of mixture toxicity effects (Pₘᵢₓ). The Pₘᵢₓ of seven neonicotinoids on the crustaceans was less than 0.8%, which is likely to be too low to indicate adverse effects caused by the insecticides. However, short temporal detection of fipronil (exclusively in June and July) significantly affected the Pₘᵢₓ, which presented the maximal Pₘᵢₓ values of 21%, 3.4%, and 72% for kuruma prawn, sand shrimp, and mysid, respectively, indicating a significant effect on the organisms. As for estuarine water (salinity <10), some water samples contained imidacloprid and fipronil exceeding the freshwater benchmarks for aquatic invertebrates. The present study provides novel insights into the seasonally varying risks of insecticides to estuarine crustaceans and highlights the importance of considering whether ecological risk periods coincide with crustacean presence.
Show more [+] Less [-]Effects of three common pesticides on survival, food consumption and midgut bacterial communities of adult workers Apis cerana and Apis mellifera
2019
Yang, Yang | Ma, Shilong | Yan, Zhenxiong | Liu, Feng | Diao, Qingyun | Dai, Pingli
The acute and chronic toxicity of 3 common pesticides, namely, amitraz, chlorpyrifos and dimethoate, were tested in Apis mellifera and Apis cerana. Acute oral toxicity LC50 values were calculated after 24 h of exposure to contaminated syrup, and chronic toxicity was tested after 15 days of exposure to 2 sublethal concentrations of pesticides. The toxicity of the tested pesticides to A. mellifera and A. cerana decreased in the order of dimethoate > chlorpyrifos > amitraz. A. mellifera was slightly more sensitive to chlorpyrifos and dimethoate than A. cerana, while A. cerana was more sensitive to amitraz than A. mellifera. Chronic toxicity tests showed that 1.0 mg/L dimethoate reduced the survival of the two bee species and the food consumption of A. mellifera, while 1.0 mg/L amitraz and 1.0 mg/L chlorpyrifos did not affect the survival or food consumption of the two bee species. The treatment of syrup with amitraz at a concentration equal to 1/10th of the LC50 value did not affect the survival of or diet consumption by A. mellifera and A. cerana; however, chlorpyrifos and dimethoate at concentrations equal to 1/10th of their respective LC50 values affected the survival of A. cerana. Furthermore, intestinal bacterial communities were identified using high-throughput sequencing targeting the V3V4 regions of the 16S rDNA gene. All major honey bee intestinal bacterial phyla, including Proteobacteria (62.84%), Firmicutes (34.04%), and Bacteroidetes (2.02%), were detected. There was a significant difference in the microbiota species richness of the two species after 15 days; however, after 30 days, no significant differences were found in the species diversity and richness between A. cerana and A. mellifera exposed to 1.0 mg/L amitraz and 1.0 mg/L chlorpyrifos. Overall, our results confirm that acute toxicity values are valuable for evaluating the chronic toxicity of these pesticides to honey bees.
Show more [+] Less [-]Abundance and characteristics of microplastics in the mangrove sediment of the semi-enclosed Maowei Sea of the south China sea: New implications for location, rhizosphere, and sediment compositions
2019
Li, Ruilong | Zhang, Linlin | Xue, Baoming | Wang, Yinghui
Microplastic pollution of intertidal mangrove ecosystems is receiving growing attention, and scientists suspect that the microplastic pollution of semi-enclosed seas is significantly different from that of other coastal types because of their unique geographical features. However, data on the distributions and characteristics of microplastics in the mangrove sediment of semi-enclosed seas are very limited. This study selected the Maowei Sea, a typical semi-enclosed sea, as its representative study site. The analysis revealed that the microplastic abundances in the river estuaries were much lower than those at the oceanic entrance zones, with values ranging from 520 ± 8 to 940 ± 17 items/kg. Polyethylene (PE)/polypropylene (PP)/polystyrene (PS), white/transparent, and <1 mm were the dominant type, colour, and size of the microplastics, respectively, in the observed mangrove sediments. Moreover, some other factors, including the rhizosphere/non-rhizosphere and the proportion of organic matter, codetermined the distribution and characteristics of microplastics. Specifically: (1) the percentage of colorful microplastics were higher in the rhizosphere due to the microbial activities and (2) positive linear relationships were found between the pore volume (PV) values of the free particulate organic matter (FPOM), occluded particulate organic matter (OPOM) (1.6–2.0 g/cm³ and >2.0 g/cm³), and the abundance of very small microplastics (<1 mm).
Show more [+] Less [-]