Refine search
Results 1431-1440 of 7,995
Influence of secondary metabolites on surface chemistry and metal adsorption of a devitalized lichen biomonitor Full text
2021
Fortuna, Lorenzo | González, Aridane G. | Tretiach, Mauro | Pokrovsky, Oleg S.
Despite the broad use of lichens as biomonitors of airborne trace elements, the surface chemistry and metal adsorption parameters of these organisms are still poorly known. The current investigation is aimed at (i) quantifying the acid-base surface properties and the first-order physical-chemical parameters of Cu²⁺ and Zn²⁺ adsorption of devitalized Pseudevernia furfuracea, a lichen commonly used in biomonitoring of airborne trace elements, and (ii) comparing the results with those available for moss biomonitors. Equilibrium constants and metal-binding site concentrations were calculated with a thermodynamic model by taking into account the presence/absence of ancillary extracellular cell wall compounds, namely melanin and acetone-soluble lichen substances. An acid–base titration experiment performed in the pH range of 3–10 showed that melanised and non-melanised P. furfuracea samples have lower pHPZC (3.53–3.99) and higher metal-binding site concentrations (0.96–1.20 mmol g⁻¹) compared to that of the mosses investigated so far at the same experimental conditions. Melanin biosynthesis increased the content of carboxyl and phosphoryl groups and reduces that of amine/polyphenols. Cu²⁺ and Zn²⁺ adsorption was unaffected by the degree of melanisation while the removal of extracellular lichen substances slightly decreased Zn²⁺ adsorption. Although Cu²⁺ and Zn²⁺ adsorption parameters related to P. furfuracea surfaces were 3 times lower than in the mosses, lichen samples adsorbed the same amount of Cu²⁺ and 30% more Zn²⁺. The present study contributes in understanding the role of ancillary cell wall compounds in Cu²⁺ and Zn²⁺ adsorption in a model lichen. It also provides a first comparison between the surface physico-chemical characteristics of lichens and mosses frequently used as biomonitors of trace elements.
Show more [+] Less [-]Possible overestimation of bisphenol analogues in municipal wastewater analyzed with GC-MS Full text
2021
Wang, Hao | Liu, Ze-hua | Tang, Zhao | Zhang, Jun | Dang, Zhi | Liu, Yu
This work for the first time showed that sulfated BPA could be directly analyzed as BPA with GC-MS after the derivatization with N,O-bis-(trimethylsilyl) trifluoroacetamide (BSTFA)+1% trimethylchlorosilane (TMCS), i.e. the deconjugation step was not necessary. This was because sulfated BPA indeed could be simultaneously deconjugated and derivatized to BPA derivative during derivatization, suggesting that any co-elution of BPA and sulfated BPA during sample extraction led to BPA overestimation in the GC-MS method with BSTFA +1% TMCS as the derivative reagent. Using BPA 4,4′-disulfates (BPA diS) as the pure standard, the co-elution phenomena of sulfated BPA was confirmed with two widely used elution solvents (i.e. methanol and ethyl acetate) or their mixed solutions with different ratios, which further suggested if only sulfated BPA existed in any wastewater sample, BPA was likely over-determined. To further confirm this finding, both influent and effluent samples collected from a local municipal wastewater treatment plant were analyzed, which clearly showed the overestimation of BPA in the two wastewaters due to co-existence of sulfated BPA in the wastewater samples. In addition to BPA, the results also showed the overestimation of other nine bisphenol analogues. As sulfated micropollutants including estrogens, androgens, phytoestrogens, etc., have been widely found in municipal wastewater, the overestimating phenomenon observed in this study may also be extended to determination of other micropollutants, which should be addressed in future.
Show more [+] Less [-]Keystone taxa shared between earthworm gut and soil indigenous microbial communities collaboratively resist chlordane stress Full text
2021
Zhu, Guofan | Du, Ruijun | Du, Daolin | Qian, Jiazhong | Ye, Mao
Chlordane is an organochlorine pesticide that is applied extensively. Residual concentrations that remain in soils after application are highly toxic to soil organisms, particularly affecting the earthworm gut and indigenous soil microorganisms. However, response mechanisms of the earthworm gut and indigenous soil microorganism communities to chlordane exposure are not well known. In this study, earthworms (Metaphire guillelmi) were exposed to chlordane-contaminated soils to investigate their response mechanisms over a gradient of chlordane toxicity. Results from high-throughput sequencing and network analysis showed that the bacterial composition in the earthworm gut varied more significantly than that in indigenous soil microbial communities under different concentrations of chlordane stress (2.3–60.8 mg kg⁻¹; p < 0.05). However, keystone species of Flavobacterium, Candidatus Nitrososphaera, and Acinetobacter remained stable in both the earthworm gut and bacterial communities despite varying degrees of chlordane exposure, and their relative abundance was slightly higher in the low-concentration treatment group (T1, T2) than in the high-concentration treatment group (T3, T4). Additionally, network analysis demonstrated that the average value of the mean degree of centrality, closeness centrality, and eigenvector centrality of all keystone species screened by four methods (MetagenomeSeq, LEfSe, OPLS-DA, Random Forest) were 161.3, 0.5, and 0.63, respectively, and that these were significantly higher (p < 0.05) than values for non-keystone species (84.9, 0.4, and 0.2, respectively). Keystone species had greater network connectivity and a stronger capacity to degrade pesticides and transform carbon and nitrogen than non-keystone species. The keystone species, which were closely related to the microbial community in soil indigenous flora and earthworm intestinal flora, could resist chlordane stress and undertake pesticide degradation. These results have increased understanding of the role of the earthworm gut and indigenous soil bacteria in resisting chlordane stress and sustaining microbial equilibrium in soil.
Show more [+] Less [-]Impacts of chlorine chemistry and anthropogenic emissions on secondary pollutants in the Yangtze river delta region Full text
2021
Li, Jingyi | Zhang, Na | Wang, Peng | Choi, Minsu | Ying, Qi | Guo, Song | Lu, Keding | Qiu, Xionghui | Wang, Shuxiao | Hu, Min | Zhang, Yuanhang | Hu, Jianlin
Multiphase chemistry of chlorine is coupled into a 3D regional air quality model (CMAQv5.0.1) to investigate the impacts on the atmospheric oxidation capacity, ozone (O₃), as well as fine particulate matter (PM₂.₅) and its major components over the Yangtze River Delta (YRD) region. The developed model has significantly improved the simulated hydrochloric acid (HCl), particulate chloride (PCl), and hydroxyl (OH) and hydroperoxyl (HO₂) radicals. O₃ is enhanced in the high chlorine emission regions by up to 4% and depleted in the rest of the region. PM₂.₅ is enhanced by 2–6%, mostly due to the increases in PCl, ammonium, organic aerosols, and sulfate. Nitrate exhibits inhomogeneous variations, by up to 8% increase in Shanghai and 2–5% decrease in most of the domain. Radicals show different responses to the inclusion of the multiphase chlorine chemistry during the daytime and nighttime. Both OH and HO₂ are increased throughout the day, while nitrate radicals (NO₃) and organic peroxy radicals (RO₂) show an opposite pattern during the daytime and nighttime. Higher HCl and PCl emissions can further enhance the atmospheric oxidation capacity, O₃, and PM₂.₅. Therefore, the anthropogenic chlorine emission inventory must be carefully evaluated and constrained.
Show more [+] Less [-]Potential effects of biodegradable single-use items in the sea: Polylactic acid (PLA) and solitary ascidians Full text
2021
Anderson, Guillermo | Shenkar, Noa
With conventional plastics posing a great threat to marine organisms, and potentially also to humans, bio-based, biodegradable plastics are being offered as an ecological solution by which to reduce the environmental impact. Inside compost facilities, bioplastics that comply with the EN 13432:2000 international standard biodegrade almost completely within 180 days. However, outside compost facilities, and specifically in marine environments, these bioplastics may have a similar effect to that of fossil-fuel based plastics. Here we investigated the effects of polyethylene terephthalate (PET) and polylactic acid (PLA) single-use cups and plates on a solitary ascidian’s biological and ecological features. Both PET and PLA microparticles reduced the fertilization rate of Microcosmus exasperatus, with no significant difference between materials. Accumulation rates in adult M. exasperatus exposed to micronized PET and PLA particles at two concentrations were similar for both the bioplastic material and the conventional plastic particles, with no significant difference between the two materials. A microbial-based digestive protocol was developed in order to recover the bioplastic material from ascidian tissue and reduce any material-loss caused by the known digestion protocols. Finally, PET plates submerged for three months in the Red Sea exhibited a significantly higher community richness and cover area in comparison to PLA plates, which did not provide a firm substrate for settlers. Indeed, coverage by the solitary ascidian Herdmania momus was significantly higher on PET plates. The current study demonstrates that discarded bioplastic products may have similar effects to those of conventional plastics on marine organism fertilization and biological accumulation, emphasizing the need to revise both the production and marketing of “biodegradable” and “compostable” plastics in order to prevent a further negative impact on ecosystems due to the mismanagement of bioplastic products.
Show more [+] Less [-]Reversible and irreversible transgenerational effects of metal exposure on nine generations of a tropical micro-crustacean Full text
2021
Pham, Hong T. | Dinh, Khuong V. | Hoang, Thu-Huong T.
Micro-crustaceans are important grazers that control the algal blooms in eutrophic lakes. However, we know little about how these key species may be affected by long-term exposure to contaminants and when the transgenerational effects are reversible and irreversible. To address this, we investigated the effects of lead (Pb, 100 μg L⁻¹) exposure on morphology and reproduction of Moina dubia for nine consecutive generations (F1–F9) in three treatments: control, Pb, and pPb (M. dubia from Pb-exposed parents returned to the control condition). In F1–F2, Pb did not affect morphology, and reproduction of M. dubia. In all later generations, Pb-exposed M. dubia had a smaller body and shorter antennae than those in control. In F3–F6, pPb-exposed animals showed no differences in body size and antennae compared to the control, suggesting recoverable effects. In F7–F9, the body size and antennae of pPb-exposed animals did not differ compared to Pb-exposed ones, and both were smaller than the control animals, suggesting irreversible effects. Pb exposure reduced the brood size, number of broods and total neonates per female in F3–F9, yet the reproduction could recover in pPb treatment until F7. No recovery of the brood size and number of broods per female was observed in pPb-exposed animals in the F8–F9. Our study suggests that long-term exposure to metals, here Pb, may cause irreversible impairments in morphology and reproduction of tropical urban micro-crustaceans that may lower the top-down control on algal blooms and functioning of eutrophic urban lakes.
Show more [+] Less [-]Pollutants affect algae-bacteria interactions: A critical review Full text
2021
You, Xiuqi | Xu, Nan | Yang, Xi | Sun, Weiling
With increasing concerns on the ecological risks of pollutants, many efforts have been devoted to revealing the toxic effects of pollutants on algae or bacteria in their monocultures. However, how pollutants affect algae and bacteria in their cocultures is still elusive but crucial due to its more environmental relevance. The present review outlines the interactions between algae and bacteria, reveals the influential mechanisms of pollutants (including pesticides, metals, engineered nanomaterials, pharmaceutical and personal care products, and aromatic pollutants) to algae and bacteria in their coexisted systems, and puts forward prospects for further advancing toxic studies in algal-bacterial systems. Pollutants affect the physiological and ecological functions of bacteria and algae by interfering with their relationships. Cell-to-cell adhesion, substrate exchange and biodegradation of organic pollutants, enhancement of signal transduction, and horizontal transfer of tolerance genes are important defense strategies in algal-bacterial systems to cope with pollution stress. Developing suitable algal-bacterial models, identifying cross-kingdom signaling molecules, and deciphering the horizontal transfer of pollutant resistant genes between algae and bacteria under pollution stress are the way forward to fully exploit the risks of pollutants in natural aquatic environments.
Show more [+] Less [-]Assessing the oxidative potential of PAHs in ambient PM2.5 using the DTT consumption assay Full text
2021
Kramer, Amber L. | Dorn, Shelby | Perez, Allison | Roper, Courtney | Titaley, Ivan A. | Cayton, Kaylee | Cook, Ronald P. | Cheong, Paul H-Y | Massey Simonich, Staci L.
The oxidative potential (OP) of atmospheric fine particulate matter (PM₂.₅) has been linked to organic content, which includes polycyclic aromatic hydrocarbons (PAHs). The OP of 135 individual PAHs (including six subclasses) was measured using the dithiolthreitol (DTT) consumption assay. The DTT assay results were used to compute the concentration of each PAH needed to consume 50% of the DTT concentration in the assay (DTT₅₀), and the reduction potential of the PAHs (ΔGᵣₓₙ). Computed reduction potential results were found to match literature reduction potential values (r² = 0.97), while DTT₅₀ results had no correlations with the computed ΔGᵣₓₙ values (r² < 0.1). The GINI equality index was used to assess the electron distribution across the surface of unreacted and reacted PAHs. GINI values correlated with ΔGᵣₓₙ in UPAH, HPAH, and OHPAH subclasses, as well as with all 135 PAHs in this study but did not correlate with DTT₅₀, indicating that electron dispersion is linked to thermodynamic reactions and structural differences in PAHs, but not linked to the OP of PAHs. Three ambient PM₂.₅ filters extracts were measured in the DTT assay, alongside mixtures of analytical standards prepared to match PAH concentrations in the filter extracts to test if the OP follows an additive model of toxicity. The additive prediction model did not accurately predict the DTT consumption in the assay for any of the prepared standard mixtures or ambient PM₂.₅ filter extracts, indicating a much more complex model of toxicity for the OP of PAHs in ambient PM₂.₅. This study combined computed molecular properties with toxicologically relevant assay results to probe the OP of anthropogenically driven portions of ambient PM₂.₅, and results in a better understanding of the complexity of ambient PM₂.₅ OP.
Show more [+] Less [-]Transcriptome analysis of the toxic mechanism of nanoplastics on growth, photosynthesis and oxidative stress of microalga Chlorella pyrenoidosa during chronic exposure Full text
2021
Yang, Wenfeng | Gao, Pan | Ma, Guoyi | Huang, Jiayi | Wu, Yixiao | Wan, Liang | Ding, Huijun | Zhang, Weihao
The toxicity of nanoplastics to aquatic organisms has been widely studied in terms of biochemical indicators. However, there is little discussion about the underlying toxic mechanism of nanoplastics on microalgae. Therefore, the chronic effect of polystyrene (PS) nanoplastics (80 nm) on Chlorella pyrenoidosa was investigated, in terms of responses at the biochemical and molecular/omic level. It was surprising that both inhibitory and promoting effects of nanoplastcis on C. pyrenoidosa were found during chronic exposure. Before 13 days, the maximum growth inhibition rate was 7.55% during 10 mg/L PS nanoplastics treatment at 9 d. However, the inhibitory effect gradually weakened with the prolongation of exposure time. Interestingly, algal growth was promoted for 1–5 mg/L nanoplastics during 15–21 d exposure. Transcriptomic analysis explained that the inhibitory effect of nanoplastics could be attributed to suppressed gene expression of aminoacyl-tRNA synthetase that resulted in the reduced synthesis of related enzymes. The promotion phenomenon may be due to that C. pyrenoidosa defended against nanoplastics stress by promoting cell proliferation, regulating intracellular osmotic pressure, and accelerating the degradation of damaged proteins and organs. This study is conducive to provide theoretical basis for evaluating the actual hazard of nanoplastics to aquatic organisms.
Show more [+] Less [-]Valorization of synthetic textile waste using CO2 as a raw material in the catalytic pyrolysis process Full text
2021
Kwon, Dohee | Yi, So-ra | Jung, Sungyup | Kwon, Eilhann E.
Since an invention of synthetic fibers (textiles), our life quality has been improved. However, the cumulative production and disposal of them have perceived as significant since they are not biodegradable and hard to be upcycled/recycled. From washing textiles, microplastics are released into the environment, which are regarded as emerging contaminants. As a means for source reduction of microplastics, this study proposed a rapid disposal platform for waste textiles (WTs), converting them into value-added products. To this end, catalytic pyrolysis of WT was studied. To offer more environmentally sound process, CO₂ was used as a raw material for WT pyrolysis. Thermal cracking of WT led to the production of syngas and CH₄ under the CO₂ environment. CO₂ resulted in additional CO production via gas phase reaction with volatile compounds evolved from pyrolysis of WT. To expedite the reaction kinetics for syngas formation, catalytic pyrolysis was done over Co-based catalyst. Comparing to non-catalytic pyrolysis, CO₂-assisted catalytic pyrolysis had 3- and 8-times higher production of H₂ and CO, respectively. This process also suppressed catalyst deactivation, converting more than 80 wt% of WT into syngas and CH₄. The more generation of CO from the use of CO₂ as a raw material offers an effective means to minimize the formations of harmful chemical species, such as benzene derivatives and polycyclic aromatic hydrocarbons.
Show more [+] Less [-]