Refine search
Results 1441-1450 of 1,506
Performance of Eleocharis macrostachya and its importance for arsenic retention in constructed wetlands
2012
Olmos-Márquez, Mario Alberto | Alarcón Herrera, María Teresa | Martín-Domínguez, Ignacio Ramiro
INTRODUCTION: Arsenic (As) can be removed from water via rhizofiltration using phytostabilizing plants. The aim of this study was to investigate the performance of Eleocharis macrostachya in constructed wetland prototypes, as well as the plant's arsenic mass retention and the distribution of As along the wetland flow gradient and the soil in the wetland mesocosmos. MATERIALS AND METHODS: Experiments were carried out in laboratory-scale wetland prototypes, two planted with E. macrostachya and one without plants. Samples of water were taken at the inlet and outlet of the wetlands during the 33-week test period. At the end of the experiment, plants and soil (silty-sand) from each prototype were divided in three equal segments (entrance, middle and exit) and analyzed for their arsenic content. Results revealed that the planted wetlands have a higher As-mass retention capacity (87–90% of the total As inflow) than prototypes without plants (27%). RESULTS: As mass balance in the planted wetlands revealed that 78% of the total inflowing As was retained in the soil bed. Nearly 2% was absorbed in the plant roots, 11% was flushed as outflow, and the fate of the remaining 9% is unknown. In the prototype without plants, the soil retained 16% of As mass, 72% of the arsenic was accounted for in the outflow, and 12% was considered unknown. Although E. macrostachya retained only 2% of the total arsenic mass in their roots, its presence was a determining factor for arsenic retention in the wetland soil medium. CONCLUSION: Hence, planted wetlands might be a suitable option for treating As-contaminated water.
Show more [+] Less [-]Enhanced degradation of azo dye alizarin yellow R in a combined process of iron–carbon microelectrolysis and aerobic bio-contact oxidation
2012
Liang, Bin | Yao, Qian | Cheng, Haoyi | Gao, Shuhong | Kong, Fanying | Cui, Dan | Guo, Yuqi | Ren, Nanqi | Wang, Aijie
PURPOSE: With the aim of enhanced degradation of azo dye alizarin yellow R (AY) and further removal of the low-strength recalcitrant matter (LsRM) of the secondary effluent as much as possible, our research focused on the combination of aerobic bio-contact oxidation (ABO) with iron/carbon microelectrolysis (ICME) process. MATERIALS AND METHODS: The combined ABO (with effective volume of 2.4 l) and ICME (with effectively volume of 0.4 l) process were studied with relatively short hydraulic retention time (HRT) of 4 or 6 h. RESULTS: At the HRT of 6 h with the reflux ratio of 1 and 2, the AY degradation efficiency in the final effluent was >96.5%, and the total organic carbon (TOC) removal efficiency were 69.86% and 79.44%, respectively. At the HRT of 4 h and the reflux ratio of 2, TOC removal efficiency and AY degradation efficiency were 73.94% and 94.89%, respectively. The ICME process obviously enhanced the total AY removal and the generated micromolecule acids and aldehydes then that wastewater backflow to the ABO where they were further biodegraded. CONCLUSION: The present research might provide the potential options for the advanced treatment azo dyes wastewater with short HRT and acceptable running costs.
Show more [+] Less [-]Assessing and forecasting the impacts of global change on Mediterranean rivers. The SCARCE Consolider project on Iberian basins
2012
Navarro-Ortega, Alícia | Acuña, V. (Vicenç) | Batalla, Ramon J. | Blasco, Julián | Conde, Carlos | Elorza, Francisco J. | Elosegi, Arturo | Francés, Félix | La Roca, Francesc | Muñoz, Isabel | Petrović, M. (Mira) | Picó, Yolanda | Sabater, Sergi | Sánchez-Vila, Xavier | Schuhmacher, Marta | Barceló, Damià
INTRODUCTION: The Consolider-Ingenio 2010 project SCARCE, with the full title “Assessing and predicting effects on water quantity and quality in Iberian Rivers caused by global change” aims to examine and predict the relevance of global change on water availability, water quality, and ecosystem services in Mediterranean river basins of the Iberian Peninsula, as well as their socio-economic impacts. Starting in December 2009, it brought together a multidisciplinary team of 11 partner Spanish institutions, as well as the active involvement of water authorities, river basin managers, and other relevant agents as stakeholders. METHODS: The study areas are the Llobregat, Ebro, Jucar, and Guadalquivir river basins. These basins have been included in previous studies and projects, the majority of whom considered some of the aspects included in SCARCE but individually. Historical data will be used as a starting point of the project but also to obtain longer time series. The main added value of SCARCE project is the inclusion of scientific disciplines ranging from hydrology, geomorphology, ecology, chemistry, and ecotoxicology, to engineering, modeling, and economy, in an unprecedented effort in the Mediterranean area. The project performs data mining, field, and lab research as well as modeling and upscaling of the findings to apply them to the entire river basin. RESULTS: Scales ranging from the laboratory to river basins are addressed with the potential to help improve river basin management. The project emphasizes, thus, linking basic research and management practices in a single framework. In fact, one of the main objectives of SCARCE is to act as a bridge between the scientific and the management and to transform research results on management keys and tools for improving the River Basin Management Plans. Here, we outline the general structure of the project and the activities conducted within the ten Work Packages of SCARCE.
Show more [+] Less [-]Long-term trends of continental-scale PCB patterns studied using a global atmosphere–ocean general circulation model
2012
Stemmler, Irene | Lammel, Gerhard
Continental-scale distribution and inter-continental transport of four polychlorinated biphenyl (PCB) congeners (28, 101, 153, 180) from 1950 to 2010 were studied using the global multicompartment chemistry transport model MPI-MCTM. Following identical primary emissions for all PCB congeners into air, most of the burden is stored in terrestrial (soil and vegetation) compartments. Thereby, PCB-28, PCB-101 and PCB-153 show a shift of the soil burden maxima from source to remote regions. This shift is downwind with regard to the westerlies for Eurasia and upwind for North America and more prominent for the lighter PCBs than for PCB-153 or PCB-180. In meridional direction, all congeners’ distributions underwent a northward migration in Eurasia and North America since the 1950s. Inter-continental transport from Eurasian sources accounts largely for contamination of Alaska and British Columbia and determines the migration of the PCB distribution in soil in North America. Trans-Pacific transport occurs mainly in the gas phase in boreal winter (December–January–February) at 3–4 km altitude and is on a multi-year time scale strongly linked to the atmospheric pressure systems over the Pacific. Inter-continental transport of the lighter, more volatile PCBs is more efficient than for the heavier PCBs.
Show more [+] Less [-]Coupling of solar-assisted advanced oxidative and biological treatment for degradation of agro-residue-based soda bleaching effluent
2012
Dhir, Amit | Prakash, Nagaraja Tejo | Sud, Dhiraj
This study evaluates the effect of integrated solar-assisted advanced oxidation process (AOP) and biological treatment on the extent of degradation of effluents from chlorination (C) and first alkaline extraction (E1) stages of soda pulp bleaching in agro-residue-based pulp and paper mill. Biodegradation of the effluents was attempted in suspended mode using activated sludge from the functional pulp and paper industry effluent treatment plant acclimatized to effluents in question. The photocatalytic treatment was employed using zinc oxide (ZnO) in slurry mode for decontamination of effluents in a batch manner and the degradation was evaluated in terms of reduction in chemical oxygen demand. The biological treatment (24 h) of C and E1 effluent resulted in 30 and 57 % of degradation, respectively. Solar-induced AOP of C and E1 effluents resulted in 53 and 43 % degradation under optimized conditions (2.5 g L−1 ZnO at pH 8.0) after 6 h of exposure. For C effluent, a short duration of solar/ZnO (1 h) prior to biological treatment reduced the time required at biological step from 24 to 12 h for almost same extent (92 %) of degradation. However, sequential biological treatment (24 h) followed by solar/ZnO (2 h) resulted in 85.5 % degradation. In contrast, in the case of E1 effluent, sequential biological (24 h)–solar/ZnO (2 h) system effectively degrades effluent to 95.4 % as compared to 84.8 % degradation achieved in solar/ZnO (2 h)–biological treatment (24 h) system. In the present study, the sequencing of photocatalysis with the biological treatment is observably efficient and technically viable process for the complete mineralization of the effluents.
Show more [+] Less [-]Invertebrates control metal/metalloid sequestration and the quality of DOC/DON released during litter decay in slightly acidic environments
2012
Schaller, Jörg | Machill, Susanne
Plant litter and organic sediments are a main sink for metals and metalloids in aquatic ecosystems. The effect of invertebrate shredder (a key species in litter decay) on metal/metalloid fixation by organic matter is described only under alkaline water conditions whereas for slightly acidic waters nothing can be found. Furthermore, less is known about the effect of invertebrate shredders on the quality of dissolved organic carbon (DOC) and nitrogen (DON) released during litter decay. We conducted an experiment to investigate the impact of invertebrate shredder (Gammarus pulex) on metal/metalloid fixation/remobilization and on the quality of DOC/DON released under slightly acidic water conditions. During decomposition of leaf litter, invertebrate shredder facilitated significantly the emergence of smaller particle sizes of organic matter. The capacity of metal fixation was significantly higher in smaller particles (POM 2,000–63 μm) compared to original leaf litter and litter residues. Thus, G. pulex enhanced metal fixation by organic partition of sediments by increasing the amount of smaller particle of organic matter in aquatic ecosystems. In contrast, the capacity of metal/metalloid fixation in the smallest fraction of POM (<63 μm) was lower compared with leaf residues in treatment without invertebrates. Remobilization of metals and metalloids was very low for all measured elements. A significant effect of invertebrates on quantitative formation of DOC/DON was confirmed. The quality of released DOC/DON, which may affect metal/metalloid remobilization, was also significantly affected by invertebrate shredders (e.g., more carboxylates). Hence, invertebrate shredder enhanced significantly the fixation of metals/metalloids into POM in slightly acidic environments.
Show more [+] Less [-]Effects of perfluorinated compounds on development of zebrafish embryos
2012
Zheng, Xin-Mei | Liu, Hong-Ling | Shi, Wei | Wei, Si | Giesy, John P. | Yu, Hong-Xia
Perfluorinated compounds (PFCs) have been widely used in industrial and consumer products and frequently detected in many environmental media. Potential reproductive effects of perfluorooctanesulfonate (PFOS), perfluorooctanoic acid (PFOA) and perfluorononanoic acid (PFNA) have been reported in mice, rats and water birds. PFOS and PFOA were also confirmed developing toxicants towards zebrafish embryos; however, the reported effect concentrations were contradictory. Polyfluorinated alkylated phosphate ester surfactants (including FC807) are precursor of PFOS and PFOA; however, there is no published information about the effects of FC807 and PFNA on zebrafish embryos. Therefore, this study was conducted to determine the effects of these four PFCs on zebrafish embryos. Normal fertilized zebrafish embryos were selected to be exposed to several concentrations of PFOA, PFNA, PFOS or FC807 in 24-well cell culture plates. A digital camera was used to image morphological anomalies of embryos with a stereomicroscope. Embryos were observed through matching up to 96-h post-fertilization (hpf) and rates of survival and abnormalities recorded. PFCs caused lethality in a concentration-dependent manner with potential toxicity in the order of PFOS > FC807 > PFNA > PFOA based on 72-h LC₅₀. Forty-eight-hour post-fertilization pericardial edema and 72- or 96-hpf spine crooked malformation were all observed. PFOA, PFNA, PFOS and FC807 all caused structural abnormalities using early stages of development of zebrafish. The PFCs all retarded the development of zebrafish embryos. The toxicity of the PFCs was related to the length of the PFC chain and functional groups.
Show more [+] Less [-]Occurrence of cyclophosphamide and epirubicin in wastewaters by direct injection analysis–liquid chromatography–high-resolution mass spectrometry
2012
Gómez-Canela, Cristian | Cortés-Francisco, Nuria | Oliva, Xavier | Pujol, Cristina | Ventura, Francesc | Lacorte, Silvia | Caixach, Josep
BACKGROUND, AIM, AND SCOPE: According to the high incidence of cancer worldwide, the amount of cytostatic drugs administered to patients has increased. These compounds are excreted to wastewaters, and therefore become potential water contaminants. At this stage, very little is known on the presence and elimination of cytostatic compounds in wastewater treatment plants (WWTP). The aim of this study was to develop a liquid chromatography–high-resolution mass spectrometry (LC–Orbitrap–MS) method for the determination of cyclophosphamide and epirubicin in wastewaters. These compounds represent two outmost used cytostatic agents. MATERIALS AND METHODS: Extraction and analytical conditions were optimized for cyclophosphamide and epirubicin in wastewater. Both solid-phase extraction using Oasis 200 mg hydrophilic–lipophilic balanced (HLB) cartridges and direct injection analysis were evaluated. Mass spectral characterization and fragmentation conditions were optimized at 50,000 resolving power (full width at half maximum, m/z 200) to obtain maximum sensitivity and identification performance. Quality parameters (recoveries, limits of detection, and repetitivity) of the methods developed were determined, and best performance was obtained with direct water analysis of the centrifuged wastewater. Finally, this method was applied to determine the presence of cyclophosphamide and epirubicin in wastewaters from a hospital effluent, an urban effluent, and influents and effluents from three WWTP. RESULTS AND DISCUSSION: Cyclophosphamide and epirubicin were recovered after 50 mL preconcentration on solid-phase extraction 200 mg Oasis HLB cartridges (87% and 37%, respectively), and no breakthrough was observed by extracting 500 mL of water. Limits of detection were of 0.35 and 2.77 ng/L for cyclophosphamide and epirubicin, respectively. On the other hand, direct injection of water spiked at 1 μg/L provided recoveries of 107% for cyclophosphamide and 44% for epirubicin and limits of detection from 3.1 to 85 ng L−1, respectively. The analysis of wastewaters using direct injection analysis revealed the presence of cyclophosphamide and epirubicin in WWTP influents and hospital and urban effluents at levels ranging from 5.73 to 24.8 μg L−1. CONCLUSIONS: The results obtained in this study demonstrate the capability of LC–Orbitrap–MS for accurate trace analysis of these very polar contaminants. This method permitted to identify cyclophosphamide and epirubicin in wastewaters and influents of WWTP, but no traces were detected in WWTP effluents. The methodology herein developed is sensitive and robust and applicable for screening of a large number of samples since no preconcentration is needed.
Show more [+] Less [-]Characterizations of particle-bound trace metals and polycyclic aromatic hydrocarbons (PAHs) within Tibetan tents of south Tibetan Plateau, China
2012
Li, Yizhong | Kang, Shichang | Chen, Pengfei | Zhang, Qianggong | Fang, Guor Cheng
INTRODUCTION: Exposure to trace metals and polycyclic aromatic hydrocarbons (PAHs) adsorbed on particulates is of a serious health concern. Levels of some trace metals in total suspended particulate and 13 PAHs of fine particulate matter were measured from nomadic tents in the southern Tibetan Plateau in summer 2010. RESULTS AND DISCUSSION: The indoor air within the tents was seriously polluted, mainly due to yak dung combustion. Average trace metal concentrations were much higher (range of indoor/outdoor ratio 61–291) than those of the outdoor air. Additionally, enrichment factors of most trace metals of indoor air were similar to those of outdoor air, indicating outdoor air quality of the studied area was possibly influenced by pollutants emitted from local tents. Mean concentrations of total PAHs and BaP within tents was 5372.45 and 364.79 ng/m3, hundred times higher than that of outdoor air of the Tibetan Plateau. Three- and four-ring PAHs were the predominant components. The diagnostic ratio of BaA/(BaA + Chr) was 0.33. Since Tibetan women typically spend longer time within the tents, they were exposed to PAHs (BaP exposure = 1.81 μg/m3) about two times of other family members. Among all the PAHs, Bap contributed the most (82.6%) of the total carcinogenicity. Similarly, the excess lifetime cancer risk for women and other family members were 2.75 × 10−4 and 1.27 × 10−4, respectively, indicating Tibetan herdsmen, especially women who are in charge of most house chores were at risk for adverse health effects.
Show more [+] Less [-]Water pollution in Asia: the urgent need for prevention and monitoring.
2012
Evans, A. | Hanjra, Munir A. | Jiang, Y. | Qadir, Manzoor | Drechsel, Pay