Refine search
Results 1451-1460 of 2,512
Atmospheric polycyclic aromatic hydrocarbons and isomer ratios as tracers of biomass burning emissions in Northern India Full text
2014
Rajput, Prashant | Sarin, M. M. | Sharma, Deepti | Darashana Siṅgha,
Emission from large-scale post-harvest agricultural-waste burning (paddy-residue burning during October–November and wheat-residue burning in April–May) is a conspicuous feature in northern India. The poor and open burning of agricultural residue result in massive emission of carbonaceous aerosols and organic pollutants to the atmosphere. In this context, concentrations of atmospheric polycyclic aromatic hydrocarbons (PAHs) and their isomer ratios have been studied for a 2-year period from a source region (Patiala: 30.2°N; 76.3°E) of two distinct biomass burning emissions. The concentrations of 4—6 ring PAHs are considerably higher compared to 2–3 ring PAHs in the ambient particulate matter (PM₂.₅). The crossplots of PAH isomer ratios, fluoranthene / (fluoranthene + pyrene) and indeno[1,2,3-cd]pyrene/(indeno[1,2,3-cd]pyrene + benzo[g,h,i]perylene) for two biomass burning emissions, exhibit distinctly different source characteristics compared to those for fossil-fuel combustion sources in south and south-east Asia. The PAH isomer ratios studied from different geographical locations in northern India also exhibit similar characteristics on the crossplot, suggesting their usefulness as diagnostic tracers of biomass burning emissions.
Show more [+] Less [-]The role of humic acid in the toxicity of arsenite to the diatom Navicula sp Full text
2014
Zhang, Jianying | Ni, Yanyan | Ding, Tengda | Zhang, Chunlong
Dissolved organic matter (DOM) affects arsenite [As(III)] toxicity by altering its sorption equilibrium at the cell wall interface. A better understanding of such mechanism is of great importance to assess As(III) ecotoxicity in aquatic systems. Batch experiments were conducted to study the effects of DOM on the regulation of As(III) sorption and toxicity in the diatom Navicula sp. The influence of humic acid (HA) on As(III) toxicity was assessed by measuring algal growth, chlorophyll a, and reactive oxygen species (ROS), whereas As(III) mobility across the cell wall was estimated by determining the concentration of intracellular, cell-wall-bound, and free As(III) ions in cell media. Results showed that the effects of HA on arsenite toxicity varied depending on various combinations of As(III)-HA concentrations. EC₅₀had an approximate threefold increase from 8.32 (HA-free control) to 22.39 μM (at 20 mg L⁻¹HA) when Navicula sp. was exposed to 1.0–100.0 μM of As(III), compared to an overall low complexation ratio of HA-As(III) in a range of 0.91–6.00 %. The cell wall-bound and intracellular arsenic content decreased by 19.8 and 20.3 %, respectively, despite the lower arsenite complexation (2.10 ± 0.16 % of the total As). Meanwhile, intracellular ROS was decreased by 12.6 % in response to 10.0 μM As(III) and 10 mg L⁻¹HA vs. the HA-free control. The significant contrast indicated that complexation alone could not explain the HA-induced reduction in arsenite toxicity and other factors including HA–cell surface interactions may come into play. Isotherms describing adsorption of HA to the Navicula sp. cells combined with morphological data by scanning electron microscopy revealed a protective HA floccule coating on the cell walls. Additional Fourier transform infrared spectroscopic data suggested the involvement of carboxylic groups during the adsorption of both HA and As(III) on the Navicula sp. cell surface. Collective data from this study suggest that cell wall-bound HA can moderate As(III) toxicity through the formation of a protective floccule coating occupying As(III) sorption sites and decreased effective functional groups capable of binding As(III). Our findings imply that As(III) toxicity can be alleviated due to the increased hindrance to cellular internalization of As(III) in the presence of naturally abundant DOM in water.
Show more [+] Less [-]Effect of organic amendments on the mobility of trace elements in phytoremediated techno-soils: role of the humic substances Full text
2014
Hattab, N. | Soubrand, M. | Guégan, R. | Motelica-Heino, M. | Bourrat, X. | Faure, O. | Bouchardon, J. L.
The efficiency of aided phytostabilization using organic amendments such as ramial chipped wood (RCW) and composted sewage sludge (CSS) was studied on contaminated techno-soils, on nine experimental plots. The objective was to characterize the role of fulvic (FA) and humic acids (HA) on the mobilization of trace elements, specifically As, Cu, Mo, Pb and Zn. Results showed that the addition of CSS increased the total organic carbon and nitrogen content more than with RCW and as a result, the C/N ratio in the CSS soil was higher than in the RCW and non-amended (NE) soil, reflecting the high decomposition of soil organic matter in the CSS soil compared with the other soils. The RCW and CSS amendments increased the hydrogen index (HI) values and the oxygen index (OI) values compared with the NE soil, especially for the soil treated with CSS which contained more aliphatic than aromatic compounds. The addition of CSS to the techno-soil significantly increased the percentage of C ₒᵣg associated with the HA fractions compared with the RCW and NE soils. The soil amended with CSS showed the highest E ₄/E ₆ ratio and the lowest E ₂/E ₃ ratio of FA. Zn and As were more abundant in the FA fraction than in the HA fraction, whereas Pb, Cu and Mo were more associated to HA than to FA in the treated and untreated soils, which may explain the difference in their mobility and availability.
Show more [+] Less [-]Assessment and rationalization of water quality monitoring network: a multivariate statistical approach to the Kabbini River (India) Full text
2014
Mavukkandy, Musthafa Odayooth | Karmakar, Subhankar | Harikumar, P. S.
The establishment of an efficient surface water quality monitoring (WQM) network is a critical component in the assessment, restoration and protection of river water quality. A periodic evaluation of monitoring network is mandatory to ensure effective data collection and possible redesigning of existing network in a river catchment. In this study, the efficacy and appropriateness of existing water quality monitoring network in the Kabbini River basin of Kerala, India is presented. Significant multivariate statistical techniques like principal component analysis (PCA) and principal factor analysis (PFA) have been employed to evaluate the efficiency of the surface water quality monitoring network with monitoring stations as the evaluated variables for the interpretation of complex data matrix of the river basin. The main objective is to identify significant monitoring stations that must essentially be included in assessing annual and seasonal variations of river water quality. Moreover, the significance of seasonal redesign of the monitoring network was also investigated to capture valuable information on water quality from the network. Results identified few monitoring stations as insignificant in explaining the annual variance of the dataset. Moreover, the seasonal redesign of the monitoring network through a multivariate statistical framework was found to capture valuable information from the system, thus making the network more efficient. Cluster analysis (CA) classified the sampling sites into different groups based on similarity in water quality characteristics. The PCA/PFA identified significant latent factors standing for different pollution sources such as organic pollution, industrial pollution, diffuse pollution and faecal contamination. Thus, the present study illustrates that various multivariate statistical techniques can be effectively employed in sustainable management of water resources. Highlights • The effectiveness of existing river water quality monitoring network is assessed• Significance of seasonal redesign of the monitoring network is demonstrated• Rationalization of water quality parameters is performed in a statistical framework.
Show more [+] Less [-]The levels of PAHs and aryl hydrocarbon receptor effects in sediments of Taihu Lake, China Full text
2014
Lei, Bingli | Kang, Jia | Wang, Xuetong | Yu, Yingxin | Zhang, Xiaolan | Wen, Yu | Wang, Yipei
A total of 16 priority polycyclic aromatic hydrocarbons (PAHs) in sediment samples from Taihu Lake were analyzed by instruments, and sediment extracts were assayed for aryl hydrocarbon receptor (AhR)-mediated ethoxyresorufin-o-deethylase (EROD) induction using a rat hepatoma cell line (H4IIE). The cause–effect relationship between the observed EROD activity and chemical concentrations of PAHs was examined. Our results showed that sediment extracts could induce significant AhR effects, and the bioassay-derived 2,3,7,8-tetrachlorodibenzo-p-dioxin equivalents of raw extracts (TEQbᵢₒs) ranged from 2.7 to 39.8 pg g⁻¹dw. Chemical analysis showed that 16 PAHs were all detected in all samples, and their total concentrations (Σ₁₆PAHs) ranged from 179.8 to 1,669.4 ng g⁻¹dw. The abundance of sedimentary PAHs in the three regions (Meiliang Bay, Gonghu Bay, and Xukou Bay) showed a decreasing trend from the inflow region to the outflow region. Chemical analysis-derived TEQs (TEQcₐₗs) contributed by PAHs ranged from 1.6 to 20.7 pg g⁻¹dw. The mean contribution rates (CRs) of PAHs to TEQbᵢₒs were 48.9 %. In Meiliang Bay, EROD effects of 60 % samples were caused by PAHs whose CRs were more than 60 %, while in most sampling sites of Gonghu Bay and Xukou Bay, the CRs of PAHs to TEQbᵢₒs were basically below 40 %. In addition, preliminary ecological risk assessment found that PAHs in sediments have very low ecological impact based on the chemical data of PAHs, while the sediments might pose an unacceptable risk to aquatic organisms and their predators based on the data of TEQbᵢₒ. These findings showed that EROD effects of sediment extracts from Taihu Lake were also caused by other compounds, such as dioxins, polychlorinated biphenyls, etc., together.
Show more [+] Less [-]Positive matrix factorization as source apportionment of soil lead and cadmium around a battery plant (Changxing County, China) Full text
2014
Xue, Jian-long | Zhi, Yu-you | Yang, Libing | Shi, Jia-chun | Zeng, Ling-zao | Wu, Lao-sheng
Chemical compositions of soil samples are multivariate in nature and provide datasets suitable for the application of multivariate factor analytical techniques. One of the analytical techniques, the positive matrix factorization (PMF), uses a weighted least square by fitting the data matrix to determine the weights of the sources based on the error estimates of each data point. In this research, PMF was employed to apportion the sources of heavy metals in 104 soil samples taken within a 1-km radius of a lead battery plant contaminated site in Changxing County, Zhejiang Province, China. The site is heavily contaminated with high concentrations of lead (Pb) and cadmium (Cd). PMF successfully partitioned the variances into sources related to soil background, agronomic practices, and the lead battery plants combined with a geostatistical approach. It was estimated that the lead battery plants and the agronomic practices contributed 55.37 and 29.28 %, respectively, for soil Pb of the total source. Soil Cd mainly came from the lead battery plants (65.92 %), followed by the agronomic practices (21.65 %), and soil parent materials (12.43 %). This research indicates that PMF combined with geostatistics is a useful tool for source identification and apportionment.
Show more [+] Less [-]Biomonitoring air quality during and after a public transportation strike in the center of Uberlândia, Minas Gerais, Brazil by Tradescantia micronucleus bioassay Full text
2014
Pereira, Boscolli Barbosa | de Campos, Edimar Olegário, Jr | de Lima, Euclides Antônio Pereira | Barrozo, Marcos Antonio Souza | Morelli, Sandra
The aim of this study was to address the lack of information concerning the air quality in the city of Uberlândia, Minas Gerais, Brazil. In this study, we conducted an unprecedented experiment involving the in situ biomonitoring of air genotoxicity in the city center during and after a public transportation strike using the Tradescantia micronucleus test. The frequency of micronuclei was significantly higher in the city center compared with the reference site (Mann–Whitney test, p < 0.05), with the highest MN levels being observed during public transport stoppage (Kruskal–Wallis, Dunn p < 0.01). In addition, the multiple linear regression analyses revealed that the low circulation of buses during public transport stoppage and the increase in the concentration of particulate matter from the increased flow of vehicles in the city center during the strike positively influenced the MN frequency. The climatic factors did not change during the biomonitoring period, reflecting the fact that climatic factors did not influence the MN frequency.
Show more [+] Less [-]Should apple snail Pomacea canaliculata (Caenogastropoda, Ampullariidae) be used as bioindicator for BDE-209? Full text
2014
Koch, Eduardo | Altamirano, Jorgelina Cecilia | Covaci, Adrian | Lana, Nerina Belén | Ciocco, Néstor Fernando
Should apple snail Pomacea canaliculata (Caenogastropoda, Ampullariidae) be used as bioindicator for BDE-209? Full text
2014
Koch, Eduardo | Altamirano, Jorgelina Cecilia | Covaci, Adrian | Lana, Nerina Belén | Ciocco, Néstor Fernando
Apple snail Pomacea canaliculata has been reported to accumulate polybrominated diphenyl ethers (PBDEs) and was recently proposed as PBDE bioindicator. This work investigates the ability of P. canaliculata to accumulate BDE-209 by dietary exposure under controlled experimental conditions. A 30-day long enrichment feeding assay was carried out using 30 adult apple snails, placed in individual aquaria. Food was enriched at three BDE-209 concentrations (400, 4,700, and 8,300 μg g⁻¹lipid weight). Correlation between BDE-209 values in food and snail tissue were estimated according to Stockholm Convention suggested criteria for chemicals with KOW>5. All animals survived with no evident physical alterations, and all of them accumulated BDE-209. BDE-209 levels in tissue samples increased exponentially with the exposure concentration. The bioaccumulation factor vs. food concentration plot showed a peculiar pattern, in which at intermediate concentrations the snails accumulated less BDE-209 than expected. Our results suggest that P. canaliculata would present a detoxification mechanism for BDE-209 different from the most commonly reported metabolic pathways.
Show more [+] Less [-]Should apple snail Pomacea canaliculata (Caenogastropoda, Ampullariidae) be used as bioindicator for BDE-209? Full text
2014
Koch, Eduardo | Altamirano, Jorgelina Cecilia | Covaci, Adrián | Lana, Nerina Belén | Ciocco, Nestor Fernando
Apple snail Pomacea canaliculata has been reported to accumulate polybrominated diphenyl ethers (PBDEs) and was recently proposed as PBDE bioindicator. This work investigates the ability of P. canaliculata to accumulate BDE-209 by dietary exposure under controlled experimental conditions. A 30-day long enrichment feeding assay was carried out using 30 adult apple snails, placed in individual aquaria. Food was enriched at three BDE-209 concentrations (400, 4,700, and 8,300 μg g−1 lipid weight). Correlation between BDE-209 values in food and snail tissue were estimated according to Stockholm Convention suggested criteria for chemicals with KOW >5. All animals survived with no evident physical alterations, and all of them accumulated BDE-209. BDE-209 levels in tissue samples increased exponentially with the exposure concentration. The bioaccumulation factor vs. food concentration plot showed a peculiar pattern, in which at intermediate concentrations the snails accumulated less BDE-209 than expected. Our results suggest that P. canaliculata would present a detoxification mechanism for BDE-209 different from the most commonly reported metabolic pathways. | Fil: Koch, Eduardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Mendoza. Instituto Argentino de Investigaciones de Zonas Aridas; Argentina. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; Argentina | Fil: Altamirano, Jorgelina Cecilia. Consejo Nacional de Investigaciones Científicas y Técnicas. Científico Tecnológico Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales; Argentina. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; Argentina | Fil: Covaci, Adrián. Universiteit Antwerpen; Bélgica | Fil: Lana, Nerina Belén. Consejo Nacional de Investigaciones Científicas y Técnicas. Científico Tecnológico Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales; Argentina | Fil: Ciocco, Nestor Fernando. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Mendoza. Instituto Argentino de Investigaciones de Zonas Aridas; Argentina. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; Argentina
Show more [+] Less [-]Environmentally friendly system for the degradation of multipesticide residues in aqueous media by the Fenton’s reaction Full text
2014
de S. Guimarães, Bruno | Kleemann, Natiele | Caldas, Sergiane S. | Costa, Fabiane P. | Silveira, Maria A. K. | Duarte, Fabio A. | Primel, Ednei G.
A Fenton oxidation system employing zero-valent iron (whose source was swarf, a residue of metallurgical industries, in powder form) and hydrogen peroxide for the treatment of an aqueous solution with six pesticides was developed, and the effect of the iron metal content, pH, and hydrogen peroxide concentration was evaluated. The characterization of the aqueous solution resulted in: pH 5.6, 105 mg L⁻¹of dissolved organic carbon, and 44.6 NTU turbidity. In addition, the characterization of the swarf by FAAS and ICP-MS showed 98.43 ± 7.40 % of zero-valent iron. The removal was strongly affected by the content of iron metal, pH, and hydrogen peroxide concentration. The best degradation conditions were 2.0 g swarf, pH 2.0, and 5 mmol L⁻¹H₂O₂. At the end of the treatment, the pesticide degradation ranged from 60 to 100 %, leading to 55 % mineralization. Besides, all hydrogen peroxide was consumed and the determination of total dissolved iron resulted in 2 mg L⁻¹. Thus, the advantages of this system are rapid degradation (up to 20 min), high-degradation rates, simple handling, and low cost.
Show more [+] Less [-]Performance evaluation of a continuous flow photocatalytic reactor for wastewater treatment Full text
2014
Rezaei, Mohammad | rashidi, Fariborz | Royaee, Sayed Javid | Jafarikojour, Morteza
A novel photocatalytic reactor for wastewater treatment was designed and constructed. The main part of the reactor was an aluminum tube in which 12 stainless steel circular baffles and four quartz tube were placed inside of the reactor like shell and tube heat exchangers. Four UV–C lamps were housed within the space of the quartz tubes. Surface of the baffles was coated with TiO₂. A simple method was employed for TiO₂ immobilization, while the characterization of the supported photocatalyst was based on the results obtained through performing some common analytical methods such as X-ray diffraction (XRD), scanning electron microscope (SEM), and BET. Phenol was selected as a model pollutant. A solution of a known initial concentration (20, 60, and 100 ppmv) was introduced to the reactor. The reactor also has a recycle flow to make turbulent flow inside of the reactor. The selected recycle flow rate was 7 × 10⁻⁵ m³.s⁻¹, while the flow rate of feed was 2.53 × 10⁻⁷, 7.56 × 10⁻⁷, and 1.26 × 10⁻⁶ m³.s⁻¹, respectively. To evaluate performance of the reactor, response surface methodology was employed. A four-factor three-level Box–Behnken design was developed to evaluate the reactor performance for degradation of phenol. Effects of phenol inlet concentration (20–100 ppmv), pH (3–9), liquid flow rate (2.53 × 10⁻⁷−1.26 × 10⁻⁶ m³.s⁻¹), and TiO₂ loading (8.8–17.6 g.m⁻²) were analyzed with this method. The adjusted R ² value (0.9936) was in close agreement with that of corresponding R ² value (0.9961). The maximum predicted degradation of phenol was 75.50 % at the optimum processing conditions (initial phenol concentration of 20 ppmv, pH ∼ 6.41, and flow rate of 2.53 × 10⁻⁷ m³.s⁻¹ and catalyst loading of 17.6 g.m⁻²). Experimental degradation of phenol determined at the optimum conditions was 73.7 %. XRD patterns and SEM images at the optimum conditions revealed that crystal size is approximately 25 nm and TiO₂ nanoparticles with visible agglomerates distribute densely and uniformly over the surface of stainless steel substrate. BET specific surface area of immobilized TiO₂ was 47.2 and 45.8 m² g⁻¹ before and after the experiments, respectively. Reduction in TOC content, after steady state condition, showed that maximum phenol decomposition occurred at neutral condition (pH ∼ 6).
Show more [+] Less [-]