Refine search
Results 1451-1460 of 8,088
Effects of polyethylene terephthalate (PET) microplastics and acid rain on physiology and growth of Lepidium sativum Full text
2021
Pignattelli, Sara | Broccoli, Andrea | Piccardo, Manuela | Terlizzi, Antonio | Renzi, Monia
This study evaluated the chronic toxicity (30 days) of different sizes of polyethylene terephthalate (PET) microplastics (60–3000 μm) provided alone or in combination with acid rain, on garden cress (Lepidium sativum). Both biometrical and physiological traits have been evaluated: i) percentage inhibition of seed germination, plant height, leaf number and fresh biomass production; ii) oxidative stress responses (hydrogen peroxide; ascorbic acid and glutathione production); iii) impairment in photosynthetic machinery in term of pigments production; iv) aminolevulinic acid and proline production. Results highlighted that different sizes of PET, alone or in combination with acid rain, are able to negatively affect both biometrical and physiological plant traits. In particular, the lower size of microplastics is able to negatively affect growth and development, as well as to trigger the oxidative burst. Regarding the pigments production, PET coupled with acid rain, induced a higher production of Chl-b, and an inhibition of aminolevulinic acid.
Show more [+] Less [-]Respiratory mortality associated with ozone in China: A systematic review and meta-analysis Full text
2021
Zhang, Yifan | Ma, Yuxia | Feng, Fengliu | Cheng, Bowen | Shen, Jiahui | Wang, Hang | Jiao, Haoran | Li, Mingji
This systematic review and meta-analysis was performed to obtain updated evidence regarding the short-term effect of ozone on respiratory mortality in China. We systematically searched the Embase, PubMed, Scopus, Web of Science, China National Knowledge Internet, and Wanfang databases for relevant studies. After screening based on the inclusion criteria, 12 studies with 19 estimates were selected for further meta-analysis. The results revealed that respiratory mortality significantly increased by 0.55% (95% confidence interval: 0.24%–0.85%; Q = 39.47, I² = 54.4%, P = 0.002, tau² < 10⁻⁵) for every 10-μg/m³ increase in the maximum 8-h average concentration of ozone. Furthermore, differences in combined estimates were observed between various regions and lag structures. The combined effect of single-day lags was generally larger than that of multiday lags; the estimate of mortality for the population in the north was larger than that for the population in the south. The sensitivity analysis demonstrated that the main findings were stable; funnel plots with Egger’s and Begg’s tests indicated no significant publication bias in our analysis.
Show more [+] Less [-]Significant influence of phosphorus resources on the growth and alkaline phosphatase activities of Microcystis aeruginosa Full text
2021
Xie, En | Su, Yuping | Deng, Songqiang | Kontopyrgou, Maria | Zhang, Dayi
It is well-accepted that phosphorus, particularly orthophosphate, is a determinant factor in aquatic eutrophication. However, numerous kinds of phosphorus sources exist in real world scenario, and limited studies have characterized the pairwise relationships among abundant different phosphorus sources and the physiological behaviour of algae. The present study developed a high-throughput assay to investigate the effects of 59 different phosphorus sources (equal initial concentration of total phosphorus) on the growth and alkaline phosphatase (AKP) activities of Microcystis aeruginosa, a model cyanobacteria whose predominance holds sway in lake eutrophication. M. aeruginosa cultivated with nucleoside monophosphates (NMPs) had higher growth, relative AKP activities and residual orthophosphate, which were positively intercorrelated. Oppositely, non-NMPs cultivation of M. aeruginosa led to negative relationships between the relative AKP activities and their growth or residual orthophosphate. These results indicated distinct mechanisms for M. aeruginosa to utilize different phosphorus sources in real-world scenario, and both phosphorus source and content are determinant factors on the growth and physiological behaviour of M. aeruginosa. Given the complicated and vast phosphorus pool in the natural environment, phosphorus resources might significantly alter the abundance and physiological behaviour of M. aeruginosa and other bloom-forming algae, then influence the phytoplanktonic community structure and affect the possibility and intensity of algal bloom. Our work hints the underestimation of the restriction factors in lake eutrophication and provides a new tool to study the driven forces of phytoplanktonic community dynamics as phosphorus from both internal and external sources.
Show more [+] Less [-]Impact of residual layer transport on air pollution in Beijing, China Full text
2021
Liu, Yusi | Tang, Guiqian | Wang, Meng | Liu, Baoxian | Hu, Bo | Chen, Qi | Wang, Yuesi
The residual layer (RL) stores a large amount of pollutants, but its effect on near-surface pollution is unknown. In this study, a two-year continuous observation was performed in Beijing using a ceilometer. The generalized boundary layer includes the mixing layer and RL. The results showed that there is no significant seasonal difference in the generalized boundary layer height (GBLH). The average GBLHs in spring, summer, autumn and winter are 1155, 1139, 1036 and 1195 m, respectively. The diurnal variation characteristics of spring, summer and autumn are similar, and the RL disappears when the mixing layer height reaches its peak in the afternoon. In winter, the development of the mixing layer is weak, and there is a 33.8% chance that the RL cannot be breached, thus making the mixing layer height at noon much lower than the GBLH. The concentrations of PM₂.₅ in the mixing layer and RL are 89 and 52 μg m⁻³, respectively, and the probability that the PM₂.₅ concentration in the RL was higher than that near the ground was 38.9%. RL transport represents an important beginning of the pollution event during the winter mornings and afternoons in Beijing. This study is helpful to better understand the structure of the RL and its influence on air pollution.
Show more [+] Less [-]Acute respiratory response to individual particle exposure (PM1.0, PM2.5 and PM10) in the elderly with and without chronic respiratory diseases Full text
2021
Chen, Tianyi | Chen, Fei’er | Wang, Kan | Ma, Xuedong | Wei, Xinping | Wang, Weigang | Huang, Pengyu | Yang, Dong | Xia, Zhaolin | Zhao, Zhuohui
Limited data were on the acute respiratory responses in the elderly in response to personal exposure of particulate matter (PM). In order to evaluate the changes of airway inflammation and pulmonary functions in the elderly in response to individual exposure of particles (PM₁.₀, PM₂.₅ and PM₁₀), we analyzed 43 elderly subjects with either asthma, chronic obstructive pulmonary disease (COPD) or Asthma COPD Overlap (ACO) and 40 age-matched subjects without asthma nor COPD in an urban community in Shanghai, China. Data were collected at the baseline and in 6 follow-ups from August 2016 to December 2018, once every 3 months except for the last twice with a 6-month interval. In each follow-up, pulmonary functions, fractional exhaled nitric oxide (FeNO), 7-day continuous personal exposure to airborne particles were measured. Multivariate linear mixed effect regression models were applied to investigate the quantitative changes of pulmonary functions and FeNO in two respective groups. The results showed that on average 4.7 follow-up visits were completed in each participant. In subjects with CRDs, an inter-quartile range (IQR) increase of personal exposure to PM₁.₀, PM₂.₅ and PM₁₀ was significantly associated with an average increase of FeNO(Lag1) of 6.7 ppb (95%CI 1.2, 9.9 ppb), 6.2 ppb (95%CI 1.5, 12.0 ppb) and 5.6 ppb (95%CI 1.5, 11.0 ppb), respectively, and an average decrease of FEV1(Lag2) of −3.6 L (95%CI -6.0, −1.1 L), −3.6 L (95%CI -6.4, −0.8 L) and −3.2 L (95%CI -5.8, −0.6 L), respectively, in the single-pollutant model. These associations remained consistent in the two-pollutant models adjusting for gaseous air pollutants. Stratified analysis showed that subjects with lower BMI, females and non-allergies were more sensitive to particle exposure. No robust significant effects were observed in the subjects without CRDs. Our study provided data on the susceptibility of the elderly with CRDs to particle exposure of PM₁.₀ and PM₂.₅, and the modification effects by BMI, gender and history of allergies.
Show more [+] Less [-]Current challenges of improving visibility due to increasing nitrate fraction in PM2.5 during the haze days in Beijing, China Full text
2021
Hu, Shuya | Zhao, Gang | Tan, Tianyi | Li, Chengcai | Zong, Taomou | Xu, Nan | Zhu, Wenfei | Hu, Min
The annual mean PM₂.₅ mass concentration has decreased because of the stringent emission controls implemented in Beijing, China in recent years, whereas the nitrate NO3– mass fraction in PM₂.₅ increases gradually. Low-visibility events occur frequently even though PM₂.₅ pollution has been mitigated significantly, with the daily mean PM₂.₅ mass concentration mostly less than 75 μg/m³. In this study, the non-linear relationship was analyzed between atmospheric visibility and PM₂.₅ based on chemical composition from a two-year field observation. Our results showed that NO3– became the main constituent of PM₂.₅, especially during the haze pollution episodes. A localized parameterization scheme was proposed between the atmospheric extinction coefficient (σext) and major chemical constituents of PM₂.₅ by multiple linear regression (MLR). The contribution of NO3– to σext increased with increasing air pollution, and NO3– became the most important contributor for PM₂.₅ above 75 μg/m³. The visibility decreased with increasing NO3– mass fraction for the same PM₂.₅ mass concentration when PM₂.₅ was above 20 μg/m³. The hygroscopicity of PM₂.₅ increased with increasing mass fraction of hygroscopic NO3–. These results stressed the importance of reducing particulate NO3– and its precursors (for instance, NH₃) through effective emission control measures as well as the tightening of PM₂.₅ standards to further improve air quality and visibility in Beijing.
Show more [+] Less [-]Cadmium exposure induces osteoporosis through cellular senescence, associated with activation of NF-κB pathway and mitochondrial dysfunction Full text
2021
Luo, Huigen | Gu, Renjie | Ouyang, Huiya | Wang, Lihong | Shi, Shanwei | Ji, Yuna | Bao, Baicheng | Liao, Guiqing | Xu, Baoshan
Cadmium (Cd) is a heavy metal toxicant as a common pollutant derived from many agricultural and industrial sources. The absorption of Cd takes place primarily through Cd-contaminated food and water and, to a significant extent, via inhalation of Cd-contaminated air and cigarette smoking. Epidemiological data suggest that occupational or environmental exposure to Cd increases the health risk for osteoporosis and spontaneous fracture such as itai-itai disease. However, the direct effects and underlying mechanism(s) of Cd exposure on bone damage are largely unknown. We used primary bone marrow-derived mesenchymal stromal cells (BMMSCs) and found that Cd significantly induced BMMSC cellular senescence through over-activation of NF-κB signaling pathway. Increased cell senescence was determined by production of senescence-associated secretory phenotype (SASP), cell cycle arrest and upregulation of p21/p53/p16ᴵᴺᴷ⁴ᵃ protein expression. Additionally, Cd impaired osteogenic differentiation and increased adipogenesis of BMMSCs, and significantly induced cellular senescence-associated defects such as mitochondrial dysfunction and DNA damage. Sprague-Dawley (SD) rats were chronically exposed to Cd to verify that Cd significantly increased adipocyte number, and decreased mineralization tissues of bone marrow in vivo. Interestingly, we observed that Cd exposure remarkably retarded bone repair and regeneration after operation of skull defect. Notably, pretreatment of melatonin is able to partially prevent Cd-induced some senescence-associated defects of BMMSCs including mitochondrial dysfunction and DNA damage. Although Cd activated mammalian target of rapamycin (mTOR) pathway, rapamycin only partially ameliorated Cd-induced cell apoptosis rather than cellular senescence phenotypes of BMMSCs. In addition, a selective NF-κB inhibitor moderately alleviated Cd-caused the senescence-related defects of the BMMSCs. The study shed light on the action and mechanism of Cd on osteoporosis and bone ageing, and may provide a novel option to ameliorate the harmful effects of Cd exposure.
Show more [+] Less [-]Exploring applicability of end member mixing approach for predicting environmental reactivity of dissolved organic matter Full text
2021
Tak, Surbhi | Han, So-Jeong | Lee, Yun-Kyung | Cho, Jinwoo | Hur, Jin
Despite the wide applications of end member mixing analysis (EMMA) for assigning the sources of dissolved organic matter (DOM) in aquatic environment, there was no study attempting to test the applicability of EMMA for predicting environmental reactivity of DOM. This study aimed to explore the feasibility of EMMA, or the concept of ideal mixing behavior of end members, for describing several well-known DOM reactivities using two DOM end member sources (i.e., soil and algae) at varying mixing ratios. The selected DOM reactivities were trihalomethane formation potential (THMFP), mineral adsorption amount, pyrene binding, membrane resistance, and biodegradation potential. Among the tested DOM functions, all were found to follow the ideal mixing behavior, presenting the linear relationships between the source mixing ratios and the tested reactivity with the R² value of >0.80. The ideal mixing behavior of the DOM functions was more pronounced than that based on several spectroscopic indicators derived from UV absorption and fluorescence spectroscopy. This study provided insight into potential applicability and limitation of EMMA approach in monitoring and predicting environmental functions of DOM in aquatic systems where identified DOM sources are mixed and vary dynamically with the mixing ratios.
Show more [+] Less [-]Interactive effects of cadmium and Benzo[a]pyrene in adult zebrafish (Danio rerio) during short-term aqueous co-exposure Full text
2021
Kodzhahinchev, Vladimir | Shekh, Kamran | Weber, Lynn P. | Niyogi, Som
Environmental water quality guidelines often work under the assumption that the toxicity of environmental pollutants is identical when present in isolation or in a complex chemical mixture. Thus, there is a crucial gap in our knowledge regarding how these toxicants interact and alter the toxicological effects in aquatic organisms. The present study examined the effects of acute (72-hr) aqueous exposures of Cadmium (Cd), a highly toxic non-essential trace metal, and Benzo[a]Pyrene (B[a]P), a prototypical polycyclic aromatic hydrocarbon (PAH) in adult zebrafish. Following a range-finding series of individual single-toxicant exposures, a second series was carried out using select concentrations in binary mixture exposures (using 5.8 or 22 μg/L for Cd; 0.44 or 1.07 μg/L for B[a]P). Our results demonstrated that tissue accumulation of both toxicants increased significantly in the presence of the second toxicant relative to single-toxicant exposures. Cd-only and B[a]P-only single toxicant exposures caused a significant downregulation of cytochrome p4501a (CYP1A1) and metallothionein-2 (MT2) mRNA in the gills, respectively, however binary co-exposures using both toxicants resulted in strong up-regulation of CYP1A1 and MT2. Additionally, co-exposures caused a strong induction of SOD1 and CAT mRNA transcript levels in the gill. The observed increase in body burden and transcript modulation did not translate into additive or more-than-additive toxic effects (oxidative stress) in zebrafish.
Show more [+] Less [-]Effect of C/N substrates for enhanced extracellular polymeric substances (EPS) production and Poly Cyclic Aromatic Hydrocarbons (PAHs) degradation Full text
2021
Premnath, N. | Mohanrasu, K. | Guru Raj Rao, R. | Dinesh, G.H. | Siva Prakash, G. | Pugazhendhi, Arivalagan | Jeyakanthan, J. | Govarthanan, Muthusamy | Kumar, Ponnuchamy | Arun, A.
Extracellular Polymeric Substances (EPS) influenced Poly Cyclic Aromatic Hydrocarbons (PAHs) degrading Klebsiella pneumoniae was isolated from the marine environment. To increase the EPS production by Klebsiella pneumoniae, several physicochemical parameters were tweaked such as different carbon sources (arabinose, glucose, glycerol, lactose, lactic acid, mannitol, sodium acetate, starch, and sucrose at 20 g/L), nitrogen sources (ammonium chloride, ammonium sulphate, glycine, potassium nitrate, protease peptone and urea at 2 g/L), different pH, carbon/nitrogen ratio, temperature, and salt concentration were examined. Maximum EPS growth and biodegradation of Anthracene (74.31%), Acenaphthene (67.28%), Fluorene (62.48%), Naphthalene (57.84%), and mixed PAHs (55.85%) were obtained using optimized conditions such as glucose (10 g/L) as carbon source, potassium nitrate (2 g/L) as the nitrogen source at pH 8, growth temperature of 37 °C, 3% NaCl concentration and 72 h incubation period. The Klebsiella pneumoniae biofilm architecture was studied by confocal laser scanning microscopy (CLSM) and scanning electron microscope (SEM). The present study demonstrates the EPS influenced PAHs degradation of Klebsiella pneumoniae.
Show more [+] Less [-]