Refine search
Results 1451-1460 of 8,010
Cadmium induced cerebral toxicity via modulating MTF1-MTs regulatory axis Full text
2021
Talukder, Milton | Bi, Shao-Shuai | Jin, Hai-Tao | Ge, Jing | Zhang, Cong | Lv, Mei-Wei | Li, Jin-Long
Metal-responsive transcription factor 1 (MTF1) participates in redox homeostasis and heavy metals detoxification via regulating the expression of metal responsive genes. However, the exact role of MTF1 in Cd-induced cerebral toxicity remains unclear. Herein, we explored the mechanism of Cd-elicited cerebral toxicity through modulating MTF1/MTs pathway in chicken cerebrum exposed to different concentrations of Cd (35 mg, 70 mg, and 140 mg/kg CdCl₂) via diet. Notably, cerebral tissues showed varying degrees of microstructural changes under Cd exposure. Cd exposure significantly up-regulated the expression of metal transporters (DMT1, ZIP8, and ZIP10) with concomitant elevated Cd level, as determined by ICP-MS. Cd significantly altered other cerebral biometals concentrations (particularly, Zn, Fe, Se, Cr, Mo, and Pb) and redox balance, resulting in increased cerebral oxidative stress. More importantly, Cd exposure suppressed MTF1 mRNA and nuclear protein levels and its target metal-responsive genes, notably metallothioneins (MT1 and MT2), and Fe and Cu transporter genes (FPN1, ATOX1, and XIAP). Moreover, Cd disrupted the regulation of expression of selenoproteome (particularly, GPxs and SelW), and cerebral Se level. Overall, our data revealed that molecular mechanisms associated with Cd-induced cerebral damage might include over-expression of DMT1, ZIP8 and ZIP10, and suppression of MTF1 and its main target metal-responsive genes as well as several selenoproteins.
Show more [+] Less [-]Moxidectin toxicity to zebrafish embryos: Bioaccumulation and biomarker responses Full text
2021
Muniz, Marta Silva | Halbach, Katharina | Alves Araruna, Igor Cauê | Martins, Rafael Xavier | Seiwert, Bettina | Lechtenfeld, Oliver | Reemtsma, Thorsten | Farias, Davi
Moxidectin is an antiparasitic drug belonging to the class of the macrocyclic lactones, subgroup mylbemicins. It is used worldwide in veterinary practice, but little is known about its potential environmental risks. Thus, we used the zebrafish embryo as a model system to study the potential effects of moxidectin on aquatic non-target organisms. The analyses were performed in two experimental sets: (1) acute toxicity and apical endpoints were characterized, with biomarker assays providing information on the activity levels of catalase (CAT), glutathione S-transferase (GST), lactate dehydrogenase (LDH), and acetylcholinesterase (AChE); and (2) internal concentration and spatial distribution of moxidectin were determined using ultraperformance liquid chromatography quadrupole-time-of-flight mass spectrometry (UPLC-QToF-MS) and matrix-assisted laser desorption/ionization-MS imaging (MALDI-MSi). The acute toxicity to zebrafish embryos (96 hpf) appeared mainly as a decrease in hatching rates (EC₅₀ = 20.75 μg/L). It also altered the enzymatic activity of biomarker enzymes related to xenobiotic processing, anaerobic metabolism, and oxidative stress (GST, LDH, and CAT, respectively) and strongly accumulated in the embryos, as internal concentrations were 4 orders of magnitude higher than those detected in exposure solutions. MALDI-MSi revealed accumulations of the drug mainly in the head and eyes of the embryos (72 and 96 hpf). Thus, our results show that exposure to moxidectin decreases hatching success by 96 h and alters biochemical parameters in the early life stages of zebrafish while accumulating in the head and eye regions of the animals, demonstrating the need to prioritize this compound for environmental studies.
Show more [+] Less [-]Chronic exposure to PPCPs mixture at environmentally relevant concentrations (ERCs) altered carbohydrate and lipid metabolism through gut and liver toxicity in zebrafish Full text
2021
Hamid, Naima | Junaid, Muhammad | Wang, Yan | Pu, Shi-Ya | Jia, Pan-Pan | Pei, De-Sheng
Pharmaceuticals and personal care products (PPCPs) have been widely distributed and posed ecotoxicological risks in the aquatic environment. This study aims to evaluate the toxic effects after chronic exposure to PPCPs mixture at the environment relevant concentrations (ERCs). Our results indicated that PPCPs induced serious metabolic effects by disturbing the carbohydrate and lipid metabolism pathways. Chronic exposure caused a significant reduction in the hepatosomatic index (HSI), the gut weight ratios, and histological alterations in liver and gut tissues. Further, exposure to the combined PPCPs disrupted the carbohydrate metabolism via significant upregulation of hk1, gk, pck1, and insr genes. The lipid metabolism was affected with higher ppars expression levels that increased the fatty acid β-oxidation and ultimately decreased the lipidogenesis. Moreover, the altered responses of the insulin growth factor (IGF) pathway more in male gut tissue than that of female revealed sex-dependent disturbance in the gut homeostasis induced by PPCPs mixture. In conclusion, chronic exposure to PPCPs mixtures at ERCs can induce developmental effects and metabolic dysfunction in both male and female fish. The consumption and environmental disposal of these PPCPs should be regulated to ensure ecological health and environmental safety.
Show more [+] Less [-]Indoor-outdoor relationships of airborne nanoparticles, BC and VOCs at rural and urban preschools Full text
2021
Portela, Nicole Becker | Teixeira, Elba Calesso | Agudelo-Castañeda, Dayana Milena | Civeira, Matheus da Silva | Silva, Luís Felipe Oliveira | Vigo, Alvaro | Kumar, Prashant
Health risks caused by exposure to black carbon (BC) and nanoparticles (NP) are well studied, although no standard currently exists for them worldwide. Exposure to children may lead to serious health effects due to their increased vulnerability and longer time spend inside the classrooms, making it important to assess the factors that affect air quality in preschools. Thus, this work aims to evaluate indoor-outdoor (I/O) relationships of NPs in the 10–420 nm range, BC and volatile organic compounds (VOCs) at rural and urban preschools (aged 3–5 years) between May 2016 and July 2017. Factorial analysis was applied to identify the possible emission sources. Prior communalities were estimated by the squared multiple correlations with all other variables. We used the varimax rotation method and the criterion for factor selection was the number of eigenvalues greater than one. Results indicate that BC and NP were 4- and 3.2-times higher in urban outdoor caused by traffic emissions, respectively. Highest concentrations occurred during rush hours and during the pickup time of children. In urban school, BC was directly related to accumulation mode (N₄₉₋₂₀₅), while in the rural area, BC was related to local traffic and particles from pulp industries in the regional background. Nucleation mode (N₁₁₋₃₆) was related to traffic emissions in urban school, while in the rural school was related with secondary formation of particles. Mean I/O ratios of BC and NP in the urban (0.54; 0.51) and rural (0.71; 0.91) schools, respectively, suggested that their higher concentrations occurred in outdoors. VOCs were higher indoor in urban (I/O = 1.97) and rural (I/O = 2.22) sites, indicating these pollutants are generated inside, regardless of urban or rural sites. These findings suggest the necessity of improving ventilation and commuting styles to lower the exposure of children to air pollutants in and around school environments.
Show more [+] Less [-]Denitrification devices in urban boilers change mercury isotope fractionation signatures of coal combustion products Full text
2021
Yuan, Jingjing | Sun, Ruoyu | Wang, Ruwei | Fu, Biao | Meng, Mei | Zheng, Wang | Chen, Jiubin
The installation rate of denitrification devices is accelerating in Chinese urban boilers. Previous studies on pulverized coal-fired boilers without denitrification devices showed that combustion products containing mainly oxidized mercury (Hg) preferably enriched lighter Hg isotopes than feed coals. However, the magnitude of this enrichment becomes less pronounced if denitrification devices are installed. The underlying Hg isotope fractionation mechanisms are still unclear. In this study, three types of urban boilers (two pulverized coal-fired boilers, one circulating fluidized bed boiler and one municipal waste incinerator boiler) all installed with denitrification devices were measured for Hg isotope compositions of their feed fuels and corresponding combustion products. We observed little mass independent fractionation but very significant mass dependent fractionation (MDF) between feed fuels and combustion products. The fly ash and desulfurization products both enriched heavier Hg isotopes than feed coals in three coal-fired boilers, and the enrichment of heavy Hg isotopes increased with sequential removal of combustion products in all boilers. Different from previously suggested kinetic MDF for gaseous Hg⁰(g)→Hgᴵᴵ(g) and gaseous Hgᴵᴵ(g)→particulate Hgᴵᴵ(p) in coal combustion flue gases, we propose an equilibrium MDF for Hg⁰(g)↔Hgᴵᴵ(g) followed by a kinetic MDF for Hgᴵᴵ(g)→Hgᴵᴵ(p). This equilibrium MDF most likely occurs during Hg⁰(g) oxidation in denitrification devices, which enriches heavy Hg isotopes in oxidized products (Hgᴵᴵ(g) and Hgᴵᴵ(p)) that are then sequestrated in fly ash and desulfurization products. The paradigm shift of MDF in boilers with denitrification devices was further verified by parallel Hg isotope measurement in urban atmosphere particulates. Our study clearly demonstrates that modern coal-fired boilers with denitrification devices have a quite different MDF compared to traditional boilers without denitrification devices. This has important implications for estimating isotope signatures of urban boiler Hg emissions, and for isotope tracing of anthropogenic Hg emissions.
Show more [+] Less [-]The occurrence and distributions of per- and polyfluoroalkyl substances (PFAS) in groundwater after a PFAS leakage incident in 2018 Full text
2021
Yong, Zhi Yuan | Kim, Ki-yŏng | Oh, Jeong-Eun
Per- and polyfluoroalkyl substances (PFAS) concentrations of groundwater in three cities of the Nakdong River Basin in South Korea were quantified to investigate PFAS contamination and the effect of PFAS leakage incident that occurred in the study area in 2018. Groundwater PFASs concentration ranged from non-detectable (N.D.) to 36.9 ng/L (mean 14.1 ng/L), in which, perfluorooctanoic acid (PFOA), perfluorohexanoic acid (PFHxA), perfluoropentanoic acid (PFPeA), and perfluorohexane sulfonate (PFHxS) were commonly observed. Compared to long-chain (C ≥ 8) PFAS, short-chain (<C8) PFAS are more commonly detected in groundwater. Statistical differences were found between the groundwater obtained from different land use. PFAS detected in groundwater from industrial land use were significant different (p<0.01) than other land usages. Spatial difference of PFAS concentrations and distributions in groundwater were also found. PFAS concentrations in groundwater at the furthest downstream area (mean 26.4 ng/L) were the highest followed by the middle reaches (mean 16.2 ng/L), and the upstream area (mean 4.3 ng/L). PFHxS, which was detected dominantly in the middle reach areas, contributed 51% of the total PFAS concentration, but was not detected in the upstream area. There was no health risk by drinking groundwater but found the effect of PFHxS leakage incident on groundwater.
Show more [+] Less [-]Characterization of dicarboxylic acids, oxoacids, and α-dicarbonyls in PM2.5 within the urban boundary layer in southern China: Sources and formation pathways Full text
2021
Liu, Jianing | Zhou, Shengzhen | Zhang, Zhimin | Kawamura, Kimitaka | Zhao, Wanyu | Wang, Xuemei | Shao, Min | Jiang, Fan | Liu, Junwen | Sun, Xi | Hang, Jian | Zhao, Jun | Pei, Chenglei | Zhang, Jingpu | Fu, Pingqing
Low-molecular-weight dicarboxylic acids, which are important components of secondary organic aerosols, have been extensively studied in recent years. Many studies have focused on ground-level observations and literature reports on the vertical distribution of the organic aerosols within the urban boundary layer are limited. In this study, the vertical profiles of dicarboxylic acids and related organic compounds (DCRCs) in PM₂.₅ were investigated at altitudinal levels (ground level and 488 m above the ground level) at the Canton Tower in Guangzhou, southern China, to elucidate their primary sources and secondary formation processes. The concentrations of DCRCs at ground level were generally higher than those at 488 m. Oxalic acid (C₂) was the most abundant species, followed by succinic acid (C₄) and malonic acid (C₃) at both heights. The higher ratio of DCRCs-bound carbon to organic carbon (i.e., DCRCs-C/OC) at 488 m (4.8 ± 1.2%) relative to that at ground level (2.7 ± 0.5%) indicated a higher degree of aerosol aging at 488 m. The abundance of C₂ was increased and the conversion of C₄ to C₃ was enhanced due to the photochemical oxidation of its homologues during long-range transport periods. The increase in C₂ was associated with in-cloud processes during pollution periods. Principal component analysis showed that DCRCs were mainly derived from atmospheric secondary processing and biomass burning was also an important source of long-chain carboxylic acids during autumn in Guangzhou. Our results illustrate that secondary processing and biomass burning play prominent roles in controlling the abundance of DCRCs. Furthermore, DCRCs are affected by air masses from regional areas, oxidation of their precursors via vertical transport and in-cloud processes.
Show more [+] Less [-]Yeast biomass-induced Co2P/biochar composite for sulfonamide antibiotics degradation through peroxymonosulfate activation Full text
2021
Peng, Yuanyuan | Tong, Wenhua | Xie, Yi | Hu, Wanrong | Li, Yonghong | Zhang, Yongkui | Wang, Yabo
Advanced oxidation processes (AOPs) based on peroxymonosulfate (PMS) activation have attracted increasing attention in recent years for organic pollutants removal. Herein, we put forward a facile method to form cobalt phosphide/carbon composite for PMS activation. Combining impregnation approach with pyrolysis treatment enabled the formation of Co₂P/biochar composites using baker’s yeast and Co²⁺ as precursors. The as-synthesized products exhibited excellent catalytic activity for sulfamethoxazole (SMX) degradation over the pH range 3.0–9.0 b y activating PMS. For example, 100% of SMX (20 mg L⁻¹) removal was achieved in 20 min with catalyst dosage of 0.4 g L⁻¹ and PMS loading of 0.4 g L⁻¹. Near zero Co²⁺ leaching was observed during catalytic reaction, which remarkably lowered the toxic risk of transition metal ion in water. Meanwhile, the reusability of catalyst could be attained by thermal treatment. SMX degradation intermediates were identified by liquid chromatography-mass spectrometry (LC-MS), which facilitated the proposal of possible SMX degradation pathways. Ecological Structure Activity Relationships (ECOSAR) analysis indicated that SMX degradation intermediates may not pose ecological toxicity to the environment. Further investigation verified that Co₂P/biochar composites could set off PMS activation not only for the degradation of SMX but also for other sulfonamides. In this study, we not only developed a facile method of utilizing environmental-benign biomass for transition metal phosphide/carbon composite formation, but also achieved highly efficient antibiotic elimination by PMS-based AOP.
Show more [+] Less [-]Mapping high resolution national daily NO2 exposure across mainland China using an ensemble algorithm Full text
2021
Liu, Jianjun
Nitrogen dioxide (NO₂) is an important air pollutant and highly related to air quality, short- and long-term health effects, and even climate. A national model was developed using the extreme gradient boosting algorithm with high-resolution tropospheric vertical column NO₂ densities from the Sentinel-5 Precursor/Tropospheric Monitoring Instrument and general meteorological variables as input to generate daily mean surface NO₂ concentrations across mainland China. Model-derived daily NO₂ estimates were high accuracy with sample-based cross-validation coefficient of determination of 0.83, a root-mean-square error of 7.58 μg/m³, a mean prediction error of 5.56 μg/m³, and a mean relative prediction error of 18.08%. It has good performance in NO₂ estimations at both regional and individual site scale. The model also performed well in terms of estimating monthly, seasonal, and annual mean NO₂ concentrations across China. The model performance appears to better than or comparable to most previous related studies. The seasonal and annual spatial distributions of surface NO₂ across China and several regional NO₂ hotspots in 2019 were derived from the model and analyzed. Also evaluated were the population exposure levels of NO₂ for cities in and provinces of China. At the national scale, about 12% of the population experienced annual mean NO₂ concentrations exceeding the Chinese national air quality standard. The nationwide model with conventional predictors developed here can derive high-resolution surface NO₂ concentrations across China routinely, benefitting air epidemiological and environmental related studies.
Show more [+] Less [-]Energy and environmental applications of Sn4+/Ti4+ doped α-Fe2O3@Cu2O/CuO photoanode under optimized photoelectrochemical conditions Full text
2021
Nagappagari, Lakshmana Reddy | Lee, Jaewon | Lee, Hyeonkwon | Jeong, Beomgyun | Lee, Kiyoung
The most promising technique for directly converting solar energy into clean fuels and environmental remediation by organic dye degradation is photoelectrochemical (PEC) process. We introduced Sn⁴⁺/Ti⁴⁺ doped α-Fe₂O₃@CuₓO heterojunction photoanode with complete optimization for PEC hydrogen (H₂) generation and organic dye degradation. Improvement of photocurrent photo and reducing overpotentials under optimized conditions lead to enhancing PEC performances, degradation efficiency of organic compounds, and H₂ generation generation rate. The optimized heterojunction photoanode (5TiFe@CuₓO-D) showed IPCE exceeding 42% compared with pristine hematite (Fe₀.₀₁–800₆ₕ) nanostructures (28%). Additionally, all the optimized photoanodes showed higher PEC stability for 10 h. Time-resolved PL spectra confirm the improved average lifetime for heterojunction photoanodes, supporting the enhanced PEC performance. Optimized 5TiFe@CuₓO-D material achieved PEC H₂ generation of ∼300 μL h⁻¹.cm⁻² which is two times higher than pristine hematite’s activity (150 μL h⁻¹.cm⁻²) and almost 99% degradation efficiency within 120 min of irradiation time. Therefore, a state-of-the-art study has been explored for hematite-based heterojunction photoanodes reflecting the superior PEC performance and hydrogen, methyl orange (MO) dye degradation activities. The improved results were reported because of stable morphology and better crystallinity acquired through systematic investigation of thermal effects and hydrothermal duration, improved electrical properties by Sn/Ti doping into the lattice of α-Fe₂O₃ and optimization of CuₓO deposition methods. The formation of well-defined heterojunction minimizes the recombination of the charge carrier and leads to effective transportation of excited electrons for the enhanced PEC performance.
Show more [+] Less [-]