Refine search
Results 1471-1480 of 7,214
Risk assessment and dose-effect of co-exposure to benzene, toluene, ethylbenzene, xylene, and styrene (BTEXS) on pulmonary function: A cross-sectional study
2022
Liao, Qilong | Zhang, Yan | Ma, Rui | Zhang, Zhaorui | Ji, Penglei | Xiao, Minghui | Du, Rui | Liu, Xin | Cui, Ying | Xing, Xiumei | Liu, Lili | Dang, Shanfeng | Deng, Qifei | Xiao, Yongmei
Inhalation is the most frequent route and the lung is the primary damaged organ for human exposure to benzene, toluene, ethylbenzene, xylene, and styrene (BTEXS). However, there is limited information on the risk and dose-effect of the BTEXS mixture on pulmonary function, particularly the overall effect. We conducted a cross-sectional study in a petrochemical plant in southern China. Spirometry and cumulative exposure dose (CED) of BTEXS were used to measure lung function and exposure levels for 635 workers in 2020, respectively. Forced vital capacity (FVC) and forced expiratory volume in 1 s (FEV₁) were tested and interpreted as percentages to predicted values [FVC or FEV₁% predicted], and FEV₁ to FVC ratio [FEV₁/FVC (%)]. We found the reduction in FVC% predicted and the risk of lung ventilation dysfunction (LVD) and its two subtypes (mixed and restrictive ventilation dysfunction, MVD, and MVD) were significantly associated with BTEXS individuals. In addition, pulmonary function damage associated with BTEXS was modified by the smoking status and age. Generalized weighted quantile sum (gWQS) regressions were used to estimate the overall dose-effect on lung function damage induced by the BTEXS mixture. Our results show wqs, an index of weighted quartiles for BTEXS, was potentially associated with the reduction in FVC and FEV₁% predicted with the coefficients [95% confidence intervals (CI)] between −1.136 (−2.202, −0.070) and −1.230 (−2.265, −0.195). Odds ratios (ORs) and 95% CIs for the wqs index of LVD, MVD, and RVD were 1.362 (1.129, 1.594), 1.323 (1.084, 1.562), and 1.394 (1.096, 1.692), respectively. Furthermore, xylene, benzene, and toluene in the BTEXS mixture potentially contribute to the development of lung function impairment. Our novel findings demonstrated the dose-response relationships between pulmonary function impairment and the BTEXS mixture and disclosed the potential key pollutants in the BTEXS mixture.
Show more [+] Less [-]Microplastic load and polymer type composition in European rocky intertidal snails: Consistency across locations, wave exposure and years
2022
Ehlers, Sonja M. | Ellrich, Julius A. | Koop, Jochen H.E.
Microplastics (<5 mm) are emerging pollutants in oceans worldwide. As such small particles are easily ingested, microplastics are found in numerous pelagic and benthic organisms. However, information on microplastics in rocky intertidal organisms and habitats is relatively scant. Therefore, we examined snails and water samples from wave-sheltered and wave-exposed rocky intertidal habitats in Helgoland (North Sea), Cap Ferrat and Giglio (Mediterranean) and Madeira (Atlantic Ocean) in 2019–2020 for microplastics. Furthermore, we examined snails from the same habitats in Helgoland, Cap Ferrat and Giglio in 2007–2009. In total, we performed 362 individual micro-Fourier-transform infrared spectroscopy (μFTIR) measurements on the snails and water samples. While the snails contained 50 microplastics (composed of nine polymer types), the water samples contained 24 microplastics (comprising six polymer types). Microplastic load and polymer type composition in the snails were rather similar across locations, wave exposure and years. Also, microplastic load and polymer composition in the water samples were similar across locations and wave exposure. Moreover, snail and water microplastic loads were significantly correlated which indicates that snails are useful bioindicators for microplastic loads in rocky intertidal habitats. Interestingly, the majority of the microplastics consisted of paint chips that likely derived from ships. Overall, our study provides the first comprehensive microplastic record in rocky intertidal organisms across locations, wave exposure and years that can serve as a baseline to examine historic and future microplastic dynamics in rocky intertidal systems.
Show more [+] Less [-]Artificial root exudates restore microbial functioning in a metal contaminated, barren, inactive soil
2022
Vaidya, Bhagyashree P. | Hagmann, Diane F. | Haramuniz, Jamila | Krumins, Jennifer Adams | Goodey, Nina M.
Restoring enzyme function in barren, brownfield soils using green strategies can improve microbial functioning and enable phytoremediation. It is known that adding simple, readily metabolized substrates secreted by growing plant roots (root exudates) or a laboratory prepared solution of root exudates (artificial root exudates) can stimulate soil microbial function. It is not known whether and how well this strategy works in a contaminated, low functioning soil from an industrial barren site because contaminants in the barren soil might inhibit microbial survival and functioning, or the microbial community might not be adapted to functionally benefit from root exudates. The objective of this study was to determine whether artificial root exudates stimulate microbial function in a barren soil. We collected soils from a barren brownfield (25R) site and an adjacent vegetated brownfield site (25F), with low and high enzyme activities, respectively. We subjected both soils to three treatments: switchgrass (native to the site), artificial root exudates, and a combination of switchgrass and artificial root exudates. We measured enzymatic activity, plant growth, soil moisture, organic matter content, and easily extractable glomalin content over 205 days. By day 157, artificial root exudates increased the phosphatase activity by 9-fold in previously vegetated brownfield soil and by 351-fold in barren brownfield soil. When exudates were added to the barren soil, the plant shoot mass was higher (52.2 ± 2.5 mg) than when they were not (35.4 ± 3.6 mg). In both soils, adding artificial root exudates significantly increased the percent moisture, organic matter, and glomalin content. Treating contaminated, barren soil with artificial root exudates resulted in increased soil microbial function and improved soil properties that might promote a hospitable habitat to support vegetation in such extreme environments. Summary: We added artificial root exudates to stimulate enzymatic function in two contaminated soils. Plant shoot mass, soil percent moisture, glomalin content, and organic matter content significantly increased due to the addition of artificial root exudates to the study soils. Microbially-mediated phosphatase activity was established in a barren, previously inactive, polluted soil.
Show more [+] Less [-]Xenobiotic pollution affects transcription of antibiotic resistance and virulence factors in aquatic microcosms
2022
Zhang, Zhenyan | Wang, Yan | Chen, Bingfeng | Lei, Chaotang | Yu, Yitian | Xu, Nuohan | Zhang, Qi | Wang, Tingzhang | Gao, Wenwen | Lu, Tao | Gillings, Michael | Qian, Haifeng
Antibiotic resistance genes (ARGs) and virulence factors (VFs) are critical threats to human health. Their abundance in aquatic ecosystems is maintained and enhanced via selection driven by environmental xenobiotics. However, their activity and expression in these environments under xenobiotic stress remains unknown. Here ARG and VF expression profiles were examined in aquatic microcosms under ciprofloxacin, glyphosate and sertraline hydrochloride treatment. Ciprofloxacin increased total expression of ARGs, particularly multidrug resistance genes. Total expression of ARGs and VFs decreased significantly under glyphosate and sertraline treatments. However, in opportunistic human pathogens, these agents increased expression of both ARGs and VFs. Xenobiotic pollutants, such as the compounds we tested here, have the potential to disrupt microbial ecology, promote resistance, and increase risk to human health. This study systematically evaluated the effects of environmental xenobiotics on transcription of ARGs and VFs, both of which have direct relevance to human health. Transcription of such genes has been overlooked in previous studies.
Show more [+] Less [-]Nanobiochar-rhizosphere interactions: Implications for the remediation of heavy-metal contaminated soils
2022
Zhang, Xiaokai | Wells, Mona | Niazi, Nabeel Khan | Bolan, Nanthi | Shaheen, Sabry | Hou, Deyi | Gao, Bin | Wang, Hailong | Rinklebe, Jörg | Wang, Zhenyu
Soil heavy metal contamination has increasingly become a serious environmental issue globally, nearing crisis proportions. There is an urgent need to find environmentally friendly materials to remediate heavy-metal contaminated soils. With the continuing maturation of research on using biochar (BC) for the remediation of contaminated soil, nano-biochar (nano-BC), which is an important fraction of BC, has gradually attracted increasing attention. Compared with BC, nano-BC has unique and useful properties for soil remediation, including a high specific surface area and hydrodynamic dispersivity. The efficacy of nano-BC for immobilization of non-degradable heavy-metal contaminants in soil systems, however, is strongly affected by plant rhizosphere processes, and there is very little known about the role that nano-BC play in these processes. The rhizosphere represents a dynamically complex soil environment, which, although having a small thickness, drives potentially large materials fluxes into and out of plants, notably agricultural foodstuffs, via large diffusive gradients. This article provides a critical review of over 140 peer-reviewed papers regarding nano-BC-rhizosphere interactions and the implications for the remediation of heavy-metal contaminated soils. We conclude that, when using nano-BC to remediate heavy metal-contaminated soil, the relationship between nano-BC and rhizosphere needs to be considered. Moreover, the challenges to extending our knowledge regarding the environmental risk of using nano-BC for remediation, as well as further research needs, are identified.
Show more [+] Less [-]Characteristics, correlations and health risks of PCDD/Fs and heavy metals in surface soil near municipal solid waste incineration plants in Southwest China
2022
Bo, Xin | Guo, Jing | Wan, Ruxing | Jia, Yuling | Yang, Zhaoxu | Lu, Yong | Wei, Min
As primary anthropogenic emission source of toxic pollutants such as heavy metals and polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs), municipal solid waste (MSW) incineration has caused worldwide concern. However, a comprehensive analysis of the pollution characteristics and health risks of PCDD/Fs and heavy metals in soils around MSW incineration plants is lacking. In this study, 17 PCDD/Fs and 11 heavy metals in soil samples collected near MSW incineration plants in Sichuan province were investigated to evaluate their pollution characteristics and potential health risk. Sichuan was selected as the study area because the MSW incineration amount in this province ranks first among all inland provinces in China. The PCDD/Fs concentrations ranged from 0.30 to 7.50 ng I-TEQ/kg, which were significantly below risk screening and intervention thresholds. Regarding heavy metals, principal component analysis suggested that Hg, Pb and Zn were the primary metals emitted from the MSW incineration plants. Cluster analysis of PCDD/Fs and heavy metals showed that of PCDD/Fs homologs and heavy metals (e.g., Hg, Pb, Zn and Cd) were clustered into one group, indicating the coexistence and coaccumulation of heavy metals (especially Hg, Pb, Zn, and Cd) and PCDD/Fs in soil. These heavy metals are thus candidate tracers for PCDD/Fs in soil near MSW incineration plants. A health risk analysis found that the carcinogenic and non-carcinogenic risks of PCDD/Fs and heavy metals (except for Ni) in the soil samples were all within acceptable levels. This study provides new insights into correlations and health risks of PCDD/Fs and heavy metals in surface soil near MSW incineration plants. The findings have implications for future studies of environmental and human health risk analysis related to waste incineration.
Show more [+] Less [-]Profiling of multiple classes of flame retardants in house dust in China: Pattern analysis and human exposure assessment
2022
Yan, Mengqi | Zhu, Hongkai | Shi, Yumeng | Xu, Ke | Chen, Shucong | Zou, Qiang | Sun, Hongwen | Kannan, Kurunthachalam
Legacy [e.g., brominated- (BFRs)] and alternative [e.g., organophosphate- (OPFRs) and nitrogenous- (NFRs)] flame retardants have a propensity to migrate out of consumer products, and thus are dispersed in indoor microenvironments. In this study, simultaneous presence of 11 BFRs, 18 OPFRs and 11 NFRs were measured in house dust collected from Tianjin, China. OPFRs were found at the highest concentrations, with a median value of 3200 ng/g, followed by NFRs (2600) and BFRs (1600). Tris(2-butoxyethyl) phosphate (median: 1800 ng/g), melamine (1100), and BDE-209 (870) were the top three most abundant chemicals in the respective groups. Location-specific patterns of flame retardant concentrations were found with 30%, 20% and 10% of samples were predominated by OPFRs, NFRs and BFRs, respectively, and the remaining samples contained by two or more of the chemical groups occurring concurrently. Network and cluster analysis results indicated the existence of multiple sources of flame retardants in the indoor microenvironment. Estimated human daily intakes via indoor dust ingestion were approximately several tens of ng/kg bw/day and were below their respective reference dose values. Our results indicate widespread occurrence of multiple flame retardant families in indoor dust and suggest need for continued monitoring and efforts to reduce exposures through dust ingestion.
Show more [+] Less [-]Health risk assessment of polychlorinated biphenyls (PCBs) in baby clothes. A preliminary study
2022
Herrero, Marta | González, Neus | Rovira, Joaquim | Marquès, Montse | Domingo, José L. | Abalos, Manuela | Abad, Esteban | Nadal, Martí
Clothes may contain a large range of chemical additives and other toxic substances, which may eventually pose a significant risk to human health. Since they are associated with pigments, polychlorinated biphenyls (PCBs) may be especially relevant. On the other hand, infants are very sensitive to chemical exposure and they may wear some contact and colored textiles for a prolonged time. Consequently, a specific human health risk assessment is required. This preliminary study was aimed at analyzing the concentrations of PCBs in ten bodysuits purchased in on-line stores and local retailers. The concentrations of 12 dioxin-like and 8 non-dioxin-like PCB congeners were determined by gas chromatography coupled to high resolution mass spectrometry, with detection limits ranging between 0.01 and 0.13 pg/g. The dermal absorption to PCBs of children at different ages (6 months, 1 year and 3 years old) was estimated, and the non-cancer and cancer risks were evaluated. Total levels of PCBs ranged from 74.2 to 412 pg/g, with a mean TEQ concentration of 13.4 pg WHO-TEQ/kg. Bodysuits made of organic cotton presented a total mean PCB concentration substantially lower than clothes made of regular cotton (11.0 vs. 15.8 pg WHO-TEQ/kg). The dermal absorption to PCBs for infants was calculated in around 3·10⁻⁵ pg WHO-TEQ/kg·day, regardless the age. This value is > 10,000-fold lower than the dietary intake of PCBs, either through breastfeeding or food consumption. Furthermore, this exposure value would not pose any health risks for the infants wearing those bodysuits. Anyhow, as it is a very preliminary study, this should be confirmed by analyzing larger sets of textile samples. Further investigations should be also focused on the co-occurrence of PCBs and other toxic chemicals (i.e., formaldehyde, bisphenols and aromatic amines) in infant clothes.
Show more [+] Less [-]Ensemble averaging using remote sensing data to model spatiotemporal PM10 concentrations in sparsely monitored South Africa
2022
Arowosegbe, Oluwaseyi Olalekan | Röösli, Martin | Künzli, Nino | Saucy, Apolline | Adebayo-Ojo, Temitope C. | Schwartz, Joel | Kebalepile, Moses | Jeebhay, Mohamed Fareed | Dalvie, Mohamed Aqiel | de Hoogh, Kees
There is a paucity of air quality data in sub-Saharan African countries to inform science driven air quality management and epidemiological studies. We investigated the use of available remote-sensing aerosol optical depth (AOD) data to develop spatially and temporally resolved models to predict daily particulate matter (PM₁₀) concentrations across four provinces of South Africa (Gauteng, Mpumalanga, KwaZulu-Natal and Western Cape) for the year 2016 in a two-staged approach. In stage 1, a Random Forest (RF) model was used to impute Multiangle Implementation of Atmospheric Correction AOD data for days where it was missing. In stage 2, the machine learner algorithms RF, Gradient Boosting and Support Vector Regression were used to model the relationship between ground-monitored PM₁₀ data, AOD and other spatial and temporal predictors. These were subsequently combined in an ensemble model to predict daily PM₁₀ concentrations at 1 km × 1 km spatial resolution across the four provinces. An out-of-bag R² of 0.96 was achieved for the first stage model. The stage 2 cross-validated (CV) ensemble model captured 0.84 variability in ground-monitored PM₁₀ with a spatial CV R² of 0.48 and temporal CV R² of 0.80. The stage 2 model indicated an optimal performance of the daily predictions when aggregated to monthly and annual means. Our results suggest that a combination of remote sensing data, chemical transport model estimates and other spatiotemporal predictors has the potential to improve air quality exposure data in South Africa's major industrial provinces. In particular, the use of a combined ensemble approach was found to be useful for this area with limited availability of air pollution ground monitoring data.
Show more [+] Less [-]Invertebrates differentially bioaccumulate pharmaceuticals: Implications for routine biomonitoring
2022
Grabicová, Kateřina | Vojs Staňová, Andrea | Švecová, Helena | Nováková, Petra | Kodeš, Vít | Leontovyčová, Drahomíra | Brooks, Bryan W. | Grabic, Roman
Surface water quality monitoring programs have been developed to examine traditional contaminants, such as persistent organic pollutants (POPs). However, urbanization, which is increasing around the world, is increasing discharge of treated wastewater and raw sewage in many regions. Pharmaceuticals and their metabolites represent typical markers of such trajectories in urbanization. We selected an ongoing monitoring program, which was designed for routine surveillance of nonionizable POPs in different aquatic matrices, to examine the occurrence of 67 pharmaceuticals and their metabolites in water and multiple bioindicator matrices: benthic invertebrates, juvenile fish, and adult fish (plasma and muscle tissue) from ten river systems with varying levels of watershed development. In addition, we placed zebra mussels and passive samplers in situ for a fixed period. A statistically significant relationship between pharmaceutical levels in passive samplers and biota was found for caged zebra mussels and benthic invertebrates, while only a few pharmaceuticals were identified in fish matrices. Invertebrates, which have received relatively limited study for pharmaceutical bioaccumulation, accumulated more pharmaceuticals than fish, up to thirty different substances. The highest concentration was observed for sertraline in zebra mussels and telmisartan in benthic invertebrates (83 and 31 ng/g ww, respectively). Our results across diverse study systems indicate that ongoing surface water quality monitoring programs, which were originally designed for traditional organic pollutants, need to be revised to account for bioaccumulation dynamics of pharmaceuticals and other ionizable contaminants. Aquatic monitoring programs routinely examine accumulation of nonionizable organic pollutants; however, we identified that these efforts need to be revised to account for bioaccumulation of ionizable contaminants, which reached higher levels in invertebrates than in fish.
Show more [+] Less [-]