Refine search
Results 1471-1480 of 7,280
Deposition-mediated phytoremediation of nitrogen oxide emissions
2022
Li, Mengzhen | Gu, Haping | Lam, Su Shiung | Sonne, Christian | Peng, Wanxi
The growing global population and use of natural resources lead to significant air pollution. Nitrogen oxide emissions is a potential killer threatening human health requiring focus and remediation using vegetation being efficient and cheap. Here we review the mechanisms of removing nitrogen oxides by dry deposition of plants, discussing the principle of leaf absorption of pollutants and factors affecting the removal of nitrogen oxides providing a theoretical basis for the selection of urban greening vegetation.
Show more [+] Less [-]In-stream sorption of azithromycin and levofloxacin in a river receiving sewage treatment plant effluent
2022
Hanamoto, Seiya | Yamamoto-Ikemoto, Ryoko
Modelling natural attenuation is crucial to managing pharmaceuticals. However, little is known about the mechanism behind their in-stream sorption. To better understand the in-stream attenuation of the highly sorptive antibiotics azithromycin (AZM) and levofloxacin (LVF), we monitored them in a 2.1-km stretch of the Asano River under diverse flow conditions. This stretch receives effluent directly from a sewage treatment plant (STP), which was a dominant source of the pharmaceuticals. Average distribution coefficients between dissolved and particulate phases (Kd,SPM) in the outflow river water were 6.3×105 L/kg for AZM and 7.5×104 L/kg for LVF, while those in the STP effluent were 1–2 orders of magnitude lower. Mass balances in the river stretch calculated by considering only dissolved phase (MBw) and both dissolved and particulate phases (MBs) were 8%–52% and 58%–102%, respectively, for AZM, and 58%–71% and 60%–105% for LVF. MBw<MBs is attributed to an increase in suspended particulate matter (SPM)-mediated mass flows in the river stretch, i.e., in-stream sorption to SPM, which was caused mainly by their much higher river Kd,SPM values than those in the effluent. Their river Kd,SPM values increased on higher-flow days with decreasing effluent content in the river water, resulting in the increase of their in-stream SPM sorption. Their in-stream loss from the entire water column (i.e., 100−MBs), which was attributable to their mass transfer from the overlying water to sediment through sorption, was decreased on higher-flow days by hydrological factors. A key finding is that AZM and LVF mostly entered the river stretch in the dissolved phase of STP effluent, whereas they existed substantially in the particulate phase in the outflow river water, especially on high-flow days.
Show more [+] Less [-]Essence of hydroxyapatite in defluoridation of drinking water: A review
2022
Rathnayake, Anushka | Hettithanthri, Oshadi | Sandanayake, Sandun | Mahatantila, Kushani | Rajapaksha, Anushka Upamali | Vithanage, Meththika
Hydroxyapatite (HAP) is an easily synthesizable, low-cost mineral that has been recognized as a potential material for fluoride removal. Some of the synthesis methods of HAP are quite straightforward and cost-effective, while some require sophisticated synthesis techniques under advanced laboratory conditions. This review assesses the physicochemical characteristics of HAP and HAP-based composites produced via various techniques, their recent development in defluoridation and most importantly, the fluoride removal performances. For the first time, fluoride removal performances of HAP and HAP composites are compared based on partition coefficient (KD) instead of maximum adsorption capacity (Qₘₐₓ), which is significantly influenced by initial loading concentrations. Novel HAP tailored composites exhibit comparatively high KD values indicating the excellent capability of fluoride removal along with specific surface areas above 120 m²/g. HAP doped with aluminium complexes, HAP doped ceramic beads, HAP-pectin nanocomposite and HAP-stilbite nanocomposite, HAP decorated nanotubes, nanowires and nanosheets demonstrated high Qₘₐₓ and KD. The secret of HAP is not the excellent fluoride removal performances but best removal at neutral and near-neutral pH, which most of the defluoridation materials are incapable of, making them ideal adsorbents for drinking water treatment. Multiple mechanisms including physical surface adsorption, ion-exchange, and electrostatic interactions are the main mechanisms involved in defluoridation. Further research work must be focused on upscaling HAP-based composites for defluoridation on a commercial scale.
Show more [+] Less [-]Effects of nitrogen and phosphorus enrichment on soil N2O emission from natural ecosystems: A global meta-analysis
2022
Shen, Yawen | Zhu, Biao
Nitrogen (N) and phosphorous (P) enrichment play an important role in regulating soil N₂O emission, but their interactive effect remains elusive (i.e. whether the effect of P or N enrichment on soil N₂O emission varies between ambient and elevated soil N or P conditions). Here, we conducted a Bayesian meta-analysis across the global natural ecosystems to determine this effect. Our results showed that P enrichment significantly decreased soil N₂O emission by 13.9% at ambient soil N condition. This N₂O mitigation is likely due to the decreased soil NO₃⁻-N content (−17.6%) derived by the enhanced plant uptake when the P limitation was alleviated by P enrichment. However, this P-induced N₂O (and NO₃⁻-N) mitigation was not found at elevated soil N condition. Additionally, N enrichment significantly increased soil N₂O emission by 101.4%, which was associated with the increased soil NH₄⁺-N (+41.0%) and NO₃⁻-N (+82.3%). However, the effect of N enrichment on soil N₂O emission did not differ between ambient and elevated soil P subgroups, indicating that the P-derived N₂O mitigation could be masked by N enrichment. Further analysis showed that manipulated N rate, soil texture, soil dissolved organic nitrogen, soil total nitrogen, soil organic carbon, soil pH, aboveground plant biomass, belowground plant biomass, and plant biomass nitrogen were the main factors affecting soil N₂O emission under N enrichment. Taken together, our study provides evidence that P enrichment has the potential to reduce soil N₂O emission from natural ecosystems, but this mitigation effect could be masked by N enrichment.
Show more [+] Less [-]Temporal evolution of acid mine drainage (AMD) leachates from the abandoned tharsis mine (Iberian Pyrite Belt, Spain)
2022
Moreno-González, Raúl | Macías, Francisco | Olías, Manuel | Ruiz Cánovas, Carlos
Acid mine drainage (AMD) due to the mining of sulfide deposits is one of the most important causes of water pollution worldwide. Remediation measures, especially in historical abandoned mines, require a deep knowledge of the geochemical characteristics of AMD effluents and metal fluxes, considering their high spatial and temporal evolution, and the existence of point and diffuse sources with a different response to rainfall events. This study investigates the temporal variations and hydrogeochemical processes affecting the composition of main AMD sources from the Tharsis mines (SW Spain), one of most important historical metal mining districts in the world. To address this, a fortnightly-monthly sampling was performed during two years in the main AMD sources and streams within the mine site covering different hydrological conditions. A seasonal pattern was observed linked to hydrological variations; higher pollutant concentrations were observed during the dry season (maximum values of 4,6 g/L of Al, 11,8 g/L of Fe, and 67 g/L of sulfate) and lower ones were observed during the rainy periods. Stream samples exhibited a negative correlation between electrical conductivity (EC) and flow, while positive values were observed in AMD sources, where groundwater fluxes were predominant. High flow also seems to be the main driver of Pb fluxes from AMD sources, as the concentration of Pb in waters increased notably during these events. The precipitation of secondary Fe minerals may limit the mobility of As and V, being retained in the proximity of mine sites. The concentration of Zn in waters seems to be controlled by the original grade in the metal deposit from which the waste is generated, together with the age of these wastes. The pollutant load delivered by the Tharsis mines to the surrounding water courses is very high; e.g., mean of 733 ton/yr of Al or 2757 ton/yr of Fe, deteriorating the streams and reservoirs downstream.
Show more [+] Less [-]The role of dietary factors on blood lead concentration in children and adolescents - Results from the nationally representative German Environmental Survey 2014–2017 (GerES V)
2022
Hahn, Domenica | Vogel, Nina | Höra, Christian | Kämpfe, Alexander | Schmied-Tobies, Maria | Göen, Thomas | Greiner, Annette | Aigner, Annette | Kolossa-Gehring, Marike
In industrialized nations, human lead exposure has decreased significantly in recent decades. Nevertheless, due to its toxic effects, this heavy metal remains a public health concern with children and adolescents being particularly at risk. In Europe nowadays, oral intake via food and drinking water is the predominant exposure pathway for lead. The objective of the present study was to investigate the association between dietary factors and blood lead (PbB) level of 3- to 17-year-old children and adolescents living in Germany, using data from the fifth German Environmental Health Survey (GerES V) and the Child and Adolescent Health Survey (KiGGS Wave 2). GerES V and KiGGS Wave 2 are two national population-representative studies conducted between 2014 and 2017, including measurement of lead concentrations in blood from 720 children and adolescents aged 3–17 years (mean age = 10.21, SD age = 4.36). Using multiple linear regression, sociodemographic and environmental characteristics as well as dietary factors could be identified as significant exposure determinants of PbB concentrations. Lead intake via domestic tap water was the strongest predictor of elevated PbB levels with 27.6% (p-value< .001) higher concentrations of highest compared to none lead intake via tap water. Other foods which were found to be relevant to PbB levels were meat, fruit, and fruit juice. While meat or fruit consumption were each associated with about 13% (p-value < .05) lower PbB levels, fruit juice drinking was associated with up to 12.2% (p-value = .04) higher PbB levels. In conclusion, results indicate the importance of dietary habits for lead exposure in children and adolescents. To protect vulnerable groups, it is recommended that future research and lead-reducing measures pay more attention to dietary links.
Show more [+] Less [-]Disposal technology and new progress for dioxins and heavy metals in fly ash from municipal solid waste incineration: A critical review
2022
Shunda lin, | Jiang, Xuguang | Zhao, Yimeng | Yan, Jianhua
Incineration has gradually become the most effective way to deal with MSW due to its obvious volume reduction and weight reduction effects. However, since heavy metals and organic pollutants carried by municipal solid waste incinerator fly ash (MSWI FA) pose a serious threat to the ecological environment and human health, they need to be handled carefully. In this study, the current status of MSWI FA disposal was first reviewed, and the harmless and resourceful disposal technologies of heavy metals and organic pollutants in MSWI FA are summarized as well. A summary of the advantages and disadvantages of each technology, including sintering, melting/vitrification, hydrothermal treatment, mechanochemistry, solidification/stabilization of MSWI FA, is compared. Finally, the research work that needs to be strengthened in the future (such as codisposal of multiple wastes, long-term stability research of disposal products, etc.) was proposed. Through comprehensive analysis, some reasonable and feasible suggestions were provided for the effective and safe disposal of MSWI FA in the future.
Show more [+] Less [-]Risk assessment of the exposure of Spanish children to acrylamide using human biomonitoring
2022
Fernández, Sandra F. | Pardo, Olga | Coscollà, Clara | Yusà, Vicent
Acrylamide (AA) is an organic contaminant that naturally forms in starchy foods during high-temperature cooking under low-moisture conditions. It is mainly produced from the sugars and amino acids present in food by the Maillard reaction. When humans are exposed to AA, AA is eliminated in the urine as mercapturic acid conjugates, primarily including N-acetyl-S-(2-carbamoylethyl)-L-cysteine (AAMA), N-acetyl-S-(2-carbamoyl-2-hydroxyethyl)-L-cysteine (GAMA3), and N-acetyl-3-[(3-amino-3-oxopropyl)sulfinyl]-L-alanine (AAMA-Sul), which are used as exposure biomarkers of AA in human biomonitoring studies. Although the carcinogenic effects of AA on humans have not been demonstrated yet, some studies have shown that AA may negatively affect children's health. The main objective of this study was to evaluate the exposure of Spanish children (n = 612) to AA. For this purpose, the levels of AAMA, AAMA-Sul, and GAMA3 in first-morning urine samples were analyzed by “dilute and shoot” and liquid chromatography coupled to tandem mass spectrometry. The three metabolites were detected in all the children involved in this study in the following order (geometric mean (GM)): AAMA (79 ng ml⁻¹) > AAMA-Sul (28 ng ml⁻¹) > GAMA3 (18 ng ml⁻¹). Statistical analysis suggested that the intake of fried potato products and biscuits could be associated with higher levels of AA metabolites in urine. Estimated daily intakes of AA in the children under study were in the range of 1.2–1.5 μg AA·kg-body weight⁻¹·day⁻¹ (GM). Risk assessment calculations indicate that the health risk of AA exposure cannot be overlooked and the exposure of Spanish children to AA should be closely monitored.
Show more [+] Less [-]Effect of CO2 driven ocean acidification on the mud crab Scylla serrata instars
2022
Thangal, Said Hamid | Muralisankar, Thirunavukkarasu | Anandhan, Krishnan | Gayathri, Velusamy | Yogeshwaran, Arumugam
The decreasing ocean pH seems to adversely affect marine organisms, including crustaceans, which leads to potential threats to seafood safety. The present investigation evaluated the effect of seawater acidification on the edible marine mud crab Scylla serrata instars. The experimental setup was designed using a multi-cell cage based system assembled with 20 pre holed PVC pipes containing 20 individual crabs to avoid cannibalism. The crab instars were exposed to CO₂ driven acidified seawater at pH 7.8 (IPCC forecast pH at the end of the 21ˢᵗ century), 7.6, 7.4, 7.2, and 7.0 for 60 days. The crabs reared in seawater without acidification at pH 8.2 served as control. The present study revealed a notable decrease in survival, feed intake, growth, molting, tissue biochemical constituents, minerals, chitin, and alkaline phosphatase in S. serrata instar reared in acidified seawater, denotes the adverse effect of seawater acidification on crabs. The significant elevations in antioxidants, lipid peroxidation, and metabolic enzymes in all acidified seawater compared to ambient pH indicates the physiological stress of the crabs' instars. The changes in the metabolic enzymes reveal the metabolism of protein and glucose for additional energy required by the crabs to tolerate the acidic stress. Hence, the present study provides insight into the seawater acidification can adversely affect the crab S. serrata.
Show more [+] Less [-]Characteristics and source apportionment of particulate carbon in precipitation based on dual-carbon isotopes (13C and 14C) in Xi'an, China
2022
Niu, Zhenchuan | Huang, Zhipu | Wang, Sen | Feng, Xue | Wu, Shugang | Zhao, Huiyizhe | Lu, Xuefeng
Wet deposition is a dominant removal pathway of carbonaceous particles from the atmosphere, but few studies have assessed the particulate carbon in precipitation in Chinese cities. To assess the characteristics and sources of particulate carbon, we measured the concentrations, fluxes, stable carbon isotopes, and radiocarbon of particulate carbon, and some cations concentrations in precipitation in Xi'an, China, in 2019. In contrast to rainfall samples, particulate carbon in snowfall samples in Xi'an showed extremely high concentrations and wet deposition fluxes. The concentrations as well as wet deposition fluxes showed no significant (p > 0.05) differences between urban and suburban sites, and they also exhibited low seasonality in rainfall samples. Water-insoluble organic carbon (WIOC) accounted for the majority (∼90%) of the concentrations and wet deposition fluxes of water-insoluble total carbon (WITC) in precipitation. The best estimates of source apportionment of WITC in precipitation showed that biological sources were the main contributor (80.0% ± 10.5%) in summer, and their contributions decreased to 47.3% ± 12.8% in winter. The contribution of vehicle exhaust emissions accounted for 11.7% ± 3.5% in summer and 39.0% ± 4.3% in winter, while the contributions of coal combustion were relatively small in summer (8.3% ± 7.0%) and winter (13.8% ± 8.5%). Biomass burning accounted for 25.7% ± 9.3% and 89.9% ± 0.7% of the biological sources in summer and winter, respectively, with the remainder comprising other sources of contemporary carbon. These results highlight the nonnegligible contributions of biogenic emissions and biomass burning to particulate carbon in precipitation in this city in summer and winter, respectively.
Show more [+] Less [-]