Refine search
Results 151-160 of 5,098
Sub-lethal and lethal toxicities of elevated CO2 on embryonic, juvenile, and adult stages of marine medaka Oryzias melastigma
2018
Lee, Changkeun | Kwon, Bong-Oh | Hong, Seongjin | Noh, Junsung | Lee, Junghyun | Ryu, Jongseong | Kang, Seong-Gil | Khim, Jong Seong
The potential leakage from marine CO2 storage sites is of increasing concern, but few studies have evaluated the probable adverse effects on marine organisms. Fish, one of the top predators in marine environments, should be an essential representative species used for water column toxicity testing in response to waterborne CO2 exposure. In the present study, we conducted fish life cycle toxicity tests to fully elucidate CO2 toxicity mechanism effects. We tested sub-lethal and lethal toxicities of elevated CO2 concentrations on marine medaka (Oryzias melastigma) at different developmental stages. At each developmental stage, the test species was exposed to varying concentrations of gaseous CO2 (control air, 5%, 10%, 20%, and 30%), with 96 h of exposure at 0–4 d (early stage), 4–8 d (middle stage), and 8–12 d (late stage). Sub-lethal and lethal effects, including early developmental delays, cardiac edema, tail abnormalities, abnormal pigmentation, and mortality were monitored daily during the 14 d exposure period. At the embryonic stage, significant sub-lethal and lethal effects were observed at pH < 6.30. Hypercapnia can cause long-term and/or delayed developmental embryonic problems, even after transfer back to clean seawater. At fish juvenile and adult stages, significant mortality was observed at pH < 5.70, indicating elevated CO2 exposure might cause various adverse effects, even during short-term exposure periods. It should be noted the early embryonic stage was found more sensitive to CO2 exposure than other developmental stages of the fish life cycle. Overall, the present study provided baseline information for potential adverse effects of high CO2 concentration exposure on fish developmental processes at different life cycle stages in marine ecosystems.
Show more [+] Less [-]Environmental tin exposure in a nationally representative sample of U.S. adults and children: The National Health and Nutrition Examination Survey 2011–2014
2018
Lehmler, Hans-Joachim | Gadogbe, Manuel | Liu, Buyun | Bao, Wei
Tin is a naturally occurring heavy metal that occurs in the environment in both inorganic and organic forms. Human exposure to tin is almost ubiquitous; however, surprisingly little is known about factors affecting environmental tin exposure in humans. This study analyzed demographic, socioeconomic and lifestyle factors associated with total urinary tin levels in adults (N = 3522) and children (N = 1641) participating in the National Health and Nutrition Examination Survey (NHANES) 2011–2014, a nationally representative health survey in the United States. Urinary tin levels, a commonly used biomarker of environmental tin exposure, were determined by inductively coupled plasma mass spectrometry (ICP-MS). Detection frequencies of tin were 87.05% in adults and 91.29% in children. Median and geometric mean levels of urinary tin in the adult population were 0.42 μg/L and 0.49 μg/L, respectively. For children, median and geometric mean levels of urinary tin were 0.60 μg/L and 0.66 μg/L, respectively. Age was identified as an important factor associated with urinary tin levels. Median tin levels in the ≥60 year age group were almost 2-fold higher than the 20–39 year age group. Tin levels in children were 2-fold higher than in adolescents. Race/ethnicity and household income were associated with tin levels in both adults and children. In addition, physical activity was inversely associated with urinary tin levels in adults. These results demonstrate that total tin exposures vary across different segments of the general U.S. population. Because the present study does not distinguish between organic and inorganic forms of tin, further studies are needed to better characterize modifiable factors associated with exposures to specific tin compounds, with the goal of reducing the overall exposure of the U.S. population.
Show more [+] Less [-]Elevated nitrate alters the metabolic activity of embryonic zebrafish
2018
Conlin, Sarah M. | Tudor, M Scarlett | Shim, Juyoung | Gosse, Julie A. | Neilson, Andrew | Hamlin, Heather J.
Nitrate accumulation in aquatic reservoirs from agricultural pollution has often been overlooked as a water quality hazard, yet a growing body of literature suggests negative effects on human and wildlife health following nitrate exposure. This research seeks to understand differences in oxygen consumption rates between different routes of laboratory nitrate exposure, whether via immersion or injection, in zebrafish (Danio rerio) embryos. Embryos were exposed within 1 h post fertilization (hpf) to 0, 10, and 100 mg/L NO₃-N with sodium nitrate, or to counter ion control (CIC) treatments using sodium chloride. Embryos in the immersion treatments received an injection of 4 nL of appropriate treatment solution into the perivitelline space. At 24 hpf, Oxygen Consumption Rates (OCR) were measured and recorded in vivo using the Agilent Technologies XFᵉ96 Extracellular Flux Analyzer and Spheroid Microplate. Immersion exposures did not induce significant changes in OCR, yet nitrate induced significant changes when injected through the embryo chorion. Injection of 10 and 100 mg/L NO₃-N down-regulated OCR compared to the control treatment group. Injection of the 100 mg/L CIC also significantly down-regulated OCR compared to the control treatment group. Interestingly, the 100 mg/L NO₃-N treatment further down-regulated OCR compared to the 100 mg/L CIC treatment, suggesting the potential for additive effects between the counter ion and the ion of interest. These data support that elevated nitrate exposure can alter normal metabolic activity by changing OCR in 24 hpf embryos. These results highlight the need for regularly examining the counter ion of laboratory nitrate compounds while conducting research with developing zebrafish, and justify examining different routes of laboratory nitrate exposure, as the chorion may act as an effective barrier to nitrate penetration in zebrafish, which may lead to conservative estimates of significant effects in other species for which nitrate more readily penetrates the chorion.
Show more [+] Less [-]The transformation of triclosan by laccase: Effect of humic acid on the reaction kinetics, products and pathway
2018
Dou, Rong-Ni | Wang, Jing-Hao | Chen, Yuan-Cai | Hu, Yong-You
This study systematically explored the effect of humic acid (HA) (as model of natural organic matter) on the kinetics, products and transformation pathway of triclosan (TCS) by laccase-catalyzed oxidation. It was found that TCS could be effectively transformed by laccase-catalysis, with the apparent second-order rate constant being 0.056 U⁻¹ mL min⁻¹. HA inhibited the removal rate of TCS. HA-induced inhibition was negatively correlated with HA concentration in the range of 0–10 mg L⁻¹ and pH-dependent from 3.5 to 9.5. FT-IR and ¹³C NMR spectra showed a decrease of aromatic hydroxyl (phenolic) groups and an increase of aromatic ether groups, indicating the cross-linking of HA via C-O-C and C-N-C bonds during enzyme-catalyzed oxidation. Ten principle oxidative products, including two quinone-like products (2-chlorohydroquinone, 2-chloro-5-(2,4-dichlodichlorophenoxy)-(1,4)benzoquinone), one chlorinated phenol (2,4-dichlorophenol (2,4-DCP)), three dimers, two trimmers and two tetramers, were detected by gas chromatograghy/mass spectrometry (GC-MS) and high performance liquid chromatography/quadrupole time-of-flight/mass spectrometry (HPLC/Q-TOF/MS). The presence of HA induced significantly lesser generation of self-polymers and enhanced cross-coupling between HA and self-polymers via C-O-C, C-N-C and C-C coupling pathways. A plausible transformation pathway was proposed as follows: TCS was initially oxidized to form reactive phenoxyl radicals, which self-coupled to each other subsequently by C-C and C-O pathway, yielding self-polymers. In addition, the scission of ether bond was also observed. The presence of HA can promote scission of ether bond and further oxidation of phenoxyl radicals, forming hydroxylated or quinone-like TCS. This study shed light on the behavior of TCS in natural environment and engineered processes, as well provided a perspective for the water/wastewater treatment using enzyme-catalyzed oxidation techniques.
Show more [+] Less [-]Enhanced H3K4me3 modifications are involved in the transactivation of DNA damage responsive genes in workers exposed to low-level benzene
2018
Li, Jie | Xing, Xiumei | Zhang, Xinjie | Liang, Boxuan | He, Zhini | Gao, Chen | Wang, Shan | Wang, Fangping | Zhang, Haiyan | Zeng, Shan | Fan, Junling | Chen, Liping | Zhang, Zhengbao | Zhang, Bo | Liu, Caixia | Wang, Qing | Lin, Weiwei | Dong, Guanghui | Tang, Huanwen | Chen, Wen | Xiao, Yongmei | Li, Daochuan
In this study, we explore whether altered global histone modifications respond to low-level benzene exposure as well as their association with the hematotoxicity. We recruited 147 low-level benzene-exposed workers and 122 control workers from a petrochemical factory in Maoming City, Guangdong Province, China. The internal exposure marker level, urinary S-phenylmercapturic acid (SPMA), in benzene-exposed workers was 1.81-fold higher than that of the controls (P < 0.001). ELISA method was established to examine the specific histone modifications in human peripheral blood lymphocytes (PBLCs) of workers. A decrease in the counts of white blood cells (WBC), neutrophils, lymphocytes, and monocytes appeared in the benzene-exposed group (all P < 0.05) compared to the control group. Global trimethylated histone 3 lysine 4 (H3K4me3) modification was enhanced in the benzene-exposed group (P < 0.05) and was positively associated with the concentration of urinary SPMA (β = 0.103, P = 0.045) and the extent of DNA damage (% Tail DNA: β = 0.181, P = 0.022), but was negatively associated with the leukocyte count (WBC: β = −0.038, P = 0.023). The in vitro study revealed that H3K4me3 mark was enriched in the promoters of several DNA damage responsive (DDR) genes including CRY1, ERCC2, and TP53 in primary human lymphocytes treated with hydroquinone. Particularly, H3K4me3 modification was positively correlated with the expression of CRY1 in the PBLCs of benzene-exposed workers. These observations indicate that H3K4me3 modification might mediate the transcriptional regulation of DDR genes in response to low-dose benzene exposure.
Show more [+] Less [-]Effects of pristine polyvinyl chloride fragments on whole body histology and protease activity in silver barb Barbodes gonionotus fry
2018
Romano, Nicholas | Ashikin, Munirah | Teh, Jun Chin | Syukri, Fadhil | Karamī, ʻAlī
Silver barb Barbodes gonionotus fry were exposed to polyvinyl chloride (PVC) fragments at increasing concentrations of 0.2, 0.5 and 1.0 mg/L for 96 h, following which whole body histological evaluation and analysis of the digestive enzymes trypsin and chymotrypsin were performed. Whole body trypsin and chymotrypsin activities increased significantly in fish exposed to 0.5 and 1.0 mg/L PVC as compared those exposed to zero or 0.2 mg/L PVC. In fish exposed to all tested concentrations, PVCs were observed in both the proximal and distal intestine, and fish exposed to 0.5–1.0 and 1.0 mg/L PVC, respectively, and these particles were associated with localized thickening of the mucosal epithelium. No tissue damage was evident in any other internal organs or gills. This lack of damage may be attributed to the absence of contaminants associated with the PVC fragments and their relatively smooth surface. The increased whole body trypsin and chymotrypsin activities may indicate an attempt to enhance digestion to compensate for epithelial thickening of the intestine and/or to digest the plastics.
Show more [+] Less [-]A meta-analysis of the distribution, sources and health risks of arsenic-contaminated groundwater in Pakistan
2018
Shāhid, Muḥammad | Niazi, Nabeel Khan | Dumat, Camille | Naidu, R. | Khalid, Sana | Rahman, Mohammad Mahmudur | Bibi, Irshad
Globally, millions of people who rely on groundwater for potable purposes and agriculture have been inadvertently exposed to toxic arsenic (As) because of its natural occurrence in groundwater in several countries of Asia, Europe and America. While the presence of As in groundwater and its impacts on human health have been documented in many countries, there is little information on As contamination in Pakistan. This review highlights, for the first time, the extent and severity of As-induced problems in Pakistan based on relevant published papers; discusses possible sources of As contamination of aquifers; and estimates As-induced potential health hazards in the country in relation to global data. Data from 43 studies (>9882 groundwater samples) were used to describe As variability in groundwater of Pakistan and for comparison with global data. The mean groundwater As content reported in these studies was 120 μg/L (range: 0.1–2090 μg/L; SD: ±307). About 73% of the values for mean As contents in the 43 studies were higher than the World Health Organization (WHO) permissible limit (10 μg/L) for drinking water, while 41% were higher than the permissible limit of As in Pakistan (50 μg/L). It was observed that groundwater samples in some areas of Punjab and Sindh provinces contained high As concentrations which were almost equal to concentrations reported in the most contaminated areas of the world. We predicted that the mean values of ADD, HQ and CR were 4.4 μg kg⁻¹day⁻¹ (range: 0–77 μg kg⁻¹day⁻¹), 14.7 (range: 0–256) and 0.0029 (range: 0–0.0512), respectively, based on mean As concentrations reported in Pakistan. In addition, this article proposes some integrated sustainable solutions and future perspectives keeping in view the regional and global context, as well as the on-ground reality of the population drinking As-contaminated water, planning issues, awareness among civil society and role of the government bodies. Based on available data, it is predicted that almost 47 million people in Pakistan are residing in areas where more than 50% of groundwater wells contain As concentrations above the WHO recommended limit of As in drinking water.
Show more [+] Less [-]Estimation of residential fine particulate matter infiltration in Shanghai, China
2018
Zhou, Xiaodan | Cai, Jing | Zhao, Yan | Chen, Renjie | Wang, Cuicui | Zhao, Ang | Yang, Changyuan | Li, Huichu | Liu, Suixin | Cao, Junji | Kan, Haidong | Xu, Huihui
Ambient concentrations of fine particulate matter (PM₂.₅) concentration is often used as an exposure surrogate to estimate PM₂.₅ health effects in epidemiological studies. Ignoring the potential variations in the amount of outdoor PM₂.₅ infiltrating into indoor environments will cause exposure misclassification, especially when people spend most of their time indoors. As it is not feasible to measure the PM₂.₅ infiltration factor (Fᵢₙf) for each individual residence, we aimed to build models for residential PM₂.₅Fᵢₙf prediction and to evaluate seasonal Fᵢₙf variations among residences. We repeated collected paired indoor and outdoor PM₂.₅ filter samples for 7 continuous days in each of the three seasons (hot, cold and transitional seasons) from 48 typical homes of Shanghai, China. PM₂.₅-bound sulfur on the filters was measured by X-ray fluorescence for PM₂.₅Fᵢₙf calculation. We then used stepwise-multiple linear regression to construct season-specific models with climatic variables and questionnaire-based predictors. All models were evaluated by the coefficient of determination (R²) and root mean square error (RMSE) from a leave-one-out-cross-validation (LOOCV). The 7-day mean (±SD) of PM₂.₅Fᵢₙf across all observations was 0.83 (±0.18). Fᵢₙf was found higher and more varied in transitional season (12–25 °C) than hot (>25 °C) and cold (<12 °C) seasons. Air conditioning use and meteorological factors were the most important predictors during hot and cold seasons; Floor of residence and building age were the best transitional season predictors. The models predicted 60.0%–68.4% of the variance in 7-day averages of Fᵢₙf, The LOOCV analysis showed an R² of 0.52 and an RMSE of 0.11. Our finding of large variation in residential PM₂.₅Fᵢₙf between seasons and across residences within season indicated the important source of outdoor-generated PM₂.₅ exposure heterogeneity in epidemiologic studies. Our models based on readily available data may potentially improve the accuracy of estimates of the health effects of PM₂.₅ exposure.
Show more [+] Less [-]Atmospheric concentrations and trends of poly- and perfluoroalkyl substances (PFAS) and volatile methyl siloxanes (VMS) over 7 years of sampling in the Global Atmospheric Passive Sampling (GAPS) network
2018
Rauert, Cassandra | Shoieb, Mahiba | Schuster, Jasmin K. | Eng, Anita | Harner, Tom
Poly- and per-fluoroalkyl substances (PFAS) and volatile methyl siloxanes (VMS) were monitored at 21 sites in the Global Atmospheric Passive Sampling (GAPS) Network. Atmospheric concentrations previously reported from 2009 were compared to concentrations measured at these sites in 2013 and 2015, to assess trends over 7 years of monitoring. Concentrations of the fluorotelomer alcohols (FTOHs) and fluorinated sulfonamides and sulfonamidoethanols (FOSAs and FOSEs) were stable at these sites from 2009 to 2015 with no significant difference (p > 0.05) in concentrations. Elevated concentrations of all the neutral PFAS were detected at the urban sites as compared to the polar/background sites. The perfluorosulfonic acids (PFSAs), meanwhile, saw a significant increase (p < 0.001) in concentrations from 2009 to 2015. The perfluorocarboxylic acids (PFCAs) had elevated concentrations in 2015, however, the difference was not statistically significant (p > 0.05). Concentrations of the PFSAs and the PFCAs were similar at all location types, showing the global reach of these persistent compounds. Concentrations of the cyclic VMS (cVMS) were at least an order of magnitude higher than the linear VMS (lVMS) and the PFAS. Octamethylcyclotetrasiloxane (D4), decamethylcyclopentasiloxane (D5) and dodecamethylcyclohexasiloxane (D6) saw a weak significant increase in concentrations from 2009 to 2013 (p < 0.05), however, hexamethylcyclotrisiloxane (D3) had a strong significant decrease in concentrations from 2009 to 2015 (p < 0.01).
Show more [+] Less [-]Performance of ceramic disk filter coated with nano ZnO for removing Escherichia coli from water in small rural and remote communities of developing regions
2018
Huang, Jing | Huang, Guohe | An, Chunjiang | He, Yuan | Yao, Yao | Zhang, Peng | Shen, Jian
Global water safety is facing great challenges due to increased population and demand. There is an urgent need to develop suitable water treatment strategy for small rural and remote communities in low-income developing countries. In order to find a low-cost solution, the reduction of E. coli using ceramic water disk coated with nano ZnO was investigated in this study. The performance of modified ceramic disk filters was influenced by several factors in the filter production process. Based on the factorial analysis, the pore size of the disk filters was the most significant factor for influencing E. coli removal efficiency and the clay content was the most significant one for influencing flow rate of modified disk filters. The coating of nano ZnO led to the change of disk filter surface and porosity. The reduction of E. coli could be attributed to both filter retention and photocatalytic antibacterial activity of nano ZnO. The effects of filter operation factors including initial E. coli concentration, illumination time and lamp power on E. coli removal effectiveness were also revealed. The results can help find a safe and cost-effective approach to solve drinking water problems in small rural and remote communities of developing regions.
Show more [+] Less [-]