Refine search
Results 151-160 of 6,473
The synergetic role of rice straw in enhancing the process of Cr(VI) photoreduction by oxalic acid
2020
Zhang, Ling | Sun, Jie | Niu, Weiya | Cao, Fengming
Based on the goal of green and effective removal of chromium (Cr(VI)) pollution in water and the idea of treating waste with waste, rice straw (RS) was firstly and successfully used in enhancing the photoreduction of highly toxic Cr(VI) to less toxic Cr(III) by oxalic acid (Ox). Batch experiments (the effect of Ox concentration, initial Cr(VI) concentration, RS dosage and coexisting ions) in Ox + RS + UV photoreduction system were designed to investigate the reaction process. Through studying the effect of initial pH in the solution, the change of pH during the photoreduction process and the free radical scavenging test, the Cr(VI) photoreduction mechanism in Ox + RS + UV system was revealed. The role of RS in Ox + RS + UV system was also deduced by the analysis of FT-IR, XRD, Mott-Schottky and the verification test of the role of –OH and SiO₂ on RS. The results showed that RS could significantly synergize Ox to reduce Cr(VI) under UV, 1 mM Cr(VI) in aqueous solution was completely removed in 60 min by Ox + RS + UV system. The Cr(VI) photoreduction mechanism in Ox + RS + UV system consisted of multiple parts: the chemical reduction by Ox(few part), the photoreduction by Ox(some part), and the synergistic photoreduction by RS with Ox(large part). The synergism of RS in Ox + RS + UV system was mainly attributed to its components of SiO₂ and –OH of cellulose.
Show more [+] Less [-]Monobutyl phthalate (MBP) can dysregulate the antioxidant system and induce apoptosis of zebrafish liver
2020
Jiao, Yaqi | Tao, Yue | Yang, Yang | Diogene, Tuyiringire | Yu, Hui | He, Ziqing | Han, Wei | Chen, Zhaobo | Wu, Pan | Zhang, Ying
In this paper, the acute toxicity of monobutyl phthalate (MBP), the main hydrolysis product of dibutyl phthalate, on adult zebrafish liver antioxidant system was studied. Compared the toxicity effect of MBP and DBP by histopathology and apoptosis experiments, we speculated that the toxic effects of DBP on animals may be caused by its metabolite MBP. The results indicated that the antioxidant Nrf2-Keap1 pathway was insufficient to resist MBP-induced hepatotoxicity and led to an imbalance of membrane ion homeostasis and liver damage. Decreased cell viability, significant tissue lesions and early hepatocyte apoptosis were observed in the zebrafish liver in MBP exposure at high concentration (10 mg/L). The activities of antioxidant enzymes and ATPases in zebrafish liver were inhibited with increased malondialdehyde (MDA) content and alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities. Integrated biomarker response (IBR) calculation results indicated that MBP mainly inhibited catalase (CAT) activity. Simultaneously, the expression of antioxidant-related genes (SOD, CAT, GPx, Nrf2, HO-1) was down-regulated, while apoptosis-related genes (p53, bax, cas3) were significantly up-regulated.
Show more [+] Less [-]Effects of warming and elevated O3 concentrations on N2O emission and soil nitrification and denitrification rates in a wheat-soybean rotation cropland
2020
Wang, Yuanyuan | Hu, Zhenghua | Shang, Dongyao | Xue, Ying | Islam, A.R.M Towfiqul | Chen, Shutao
The effects of warming and elevated ozone (O₃) concentrations on nitrous oxide (N₂O) emission from cropland has received increasing attention; however, the small number of studies on this topic impedes understanding. A field experiment was performed to explore the role of warming and elevated O₃ concentrations on N₂O emission from wheat-soybean rotation cropland from 2012 to 2013 using open-top chambers (OTCs). Experimental treatments included ambient temperature (control), elevated temperature (+2 °C), elevated O₃ (100 ppb), and combined elevated temperature (+2 °C) and O₃ (100 ppb). Results demonstrate that warming significantly increased the accumulative amount of N₂O (AAN) emitted from the soil-winter wheat system due to enhanced nitrification rates in the wheat farmland and nitrate reductase activity in wheat leaves. However, elevated O₃ concentrations significantly decreased AAN emission from the soil-soybean system owing to reduced nitrification rates in the soybean farmland. The combined treatment of warming and elevated O₃ inhibited the emission of N₂O from the soybean farmland. Additionally, both the warming and combined treatments significantly increased soil nitrification rates in winter wheat and soybean croplands and decreased denitrification rates in the winter wheat cropping system. Our results suggest that global warming and elevated O₃ concentrations will strongly affect N₂O emission from wheat-soybean rotation croplands.
Show more [+] Less [-]Remediation of heavy metals polluted environment using Fe-based nanoparticles: Mechanisms, influencing factors, and environmental implications
2020
Latif, Abdul | Sheng, Di | Sun, Kai | Si, Youbin | Azeem, Muhammad | Abbas, Aown | Vēlāyutan̲, T. A.
Environmental pollution by heavy metals (HMs) has raised considerable attention due to their toxic impacts on plants, animals and human beings. Thus, the environmental cleanup of these toxic (HMs) is extremely urgent both from the environmental and biological point of view. To remediate HMs-polluted environment, several nanoparticles (NPs) such as metals and its oxides, carbon materials, zeolites, and bimetallic NPs have been documented. Among these, Fe-based NPs have emerged as an effective choice for remediating environmental contamination, due to infinite size, high reactivity, and adsorption properties. This review summarizes the utilization of various Fe-based NPs such as nano zero-valent iron (NZVI), modified-NZVI, supported-NZVI, doped-NZVI, and Fe oxides and hydroxides in remediating the HMs-polluted environment. It presents a comprehensive elaboration on the possible reaction mechanisms between the Fe-based NPs and heavy metals, including adsorption, oxidation/reduction, and precipitation. Subsequently, the environmental factors (e.g., pH, organic matter, and redox) affecting the reactivity of the Fe-based NPs with heavy metals are also highlighted in the current study. Research shows that Fe-based NPs can be toxic to living organisms. In this context, this review points out the environmental hazards associated with the application of Fe-based NPs and proposes future recommendations for the utilization of these NPs.
Show more [+] Less [-]Development and environmental implication of pedotransfer functions of Cd desorption rate coefficients in historically polluted soils
2020
Lin, Zhongbing | Zou, Xingying | Zhang, Renduo | Nguyen, Christophe | Huang, Jiesheng | Wang, Kang | Wu, Jingwei | Huang, Shuang
The desorption rate is an important factor determining cadmium (Cd) ecotoxicity and pollution remediation in soils. The pedotransfer functions (PTFs) of desorption rate coefficients of fresh Cd in soils have been developed in literature. We hypothesized that the aging of Cd pollution would alter Cd desorption process. Taking historically polluted soils as the object, this study aimed at testing the hypothesis and developing new PTFs of desorption rate coefficients for historical Cd. 15 d batch extraction experiments and 13 kinetic models were employed to define Cd desorption rate coefficients in 27 historically polluted soil samples. Compared with fresh Cd, the desorption rate coefficients of historical Cd were lower, and the break time of biphasic desorption processes was retarded to 3 d (4320 min). Different with the usual models for fresh Cd desorption (e.g. parabolic diffusion and two constant rate models), the best models to mimic the historical Cd desorption processes were the pseudo first order, logarithmic, Elovich, and simple Elovich models. The rate-limiting step controlling Cd desorption was changed from the intraparticle diffusion to the interface reaction with aging of pollution. New PTFs of desorption rate coefficients of historical Cd were established (R² ≥ 0.71). Cd desorption rate coefficients increased with organic matter and clay contents, but decreased with oxalate extractable Fe content, solution pH, cation exchange capacity, and silt content. The key soil properties influencing desorption rate coefficients were not altered by the aging of pollution. The developed PTFs could guide us to adjusting the ecotoxicity and pollution remediation of Cd in historically polluted field soils.
Show more [+] Less [-]Interactive effects of earthworm Eisenia fetida and bean plant Phaseolus vulgaris L on the fate of soil selenium
2020
Azhar-u-ddin, | Huang, Jung-Chen | Gan, Xinyu | He, Shengbing | Zhou, Weili
Selenium (Se) is an essential micronutrient for animals with a narrow margin between essentiality and toxicity. Se toxicity is largely related to inorganic forms of Se in soil, i.e., selenite and selenate that enter food chains through plant uptake, threatening higher trophic level organisms. This experiment investigated effects of earthworm activity on Se bioavailability in soil and the subsequent plant uptake, using earthworm Eisenia fetida and bean plant Phaseolus vulgaris L, both exposed to either selenite or selenate at 1 or 4 mg Se kg⁻¹ for 16 weeks. Plants took up selenate (up to 221-fold) faster than selenite, with up to 84% of the Se rapidly transported to shoots. In the presence of earthworms, Se accumulation obviously increased for selenate-supplied plants, leading to an up to 4% increase in Se translocation factor for all treatments except for 1 mg kg⁻¹ selenite treatment. Earthworms also concentrated Se faster in tissues (up to 274 mg kg⁻¹ DW) at exposure to selenate. For Se toxicity, Se speciation analysis was conducted on the plants and earthworms using XAS. Compared to worm-free treatments, the percentage of organo-Se, i.e., SeMet and CysSeSeCys, increased in beans (up to 34%) in the presence of earthworms for selenate, while the elemental Se portion was significantly reduced or absent, opposite to the results for selenite. Surprisingly, elemental Se (up to 65%) dominated earthworms, regardless of the form of Se supplied. In conclusion, earthworms clearly enhanced Se uptake and translocation in plants, leading to elevated Se levels in shoots. To prevent resulting hazards to humans and other animals, caution should be taken while consuming the shoots, particularly beans, harvested from the Se contaminated soil where earthworm activity is high. Finally, the significant reduction in soil Se suggests phytoextraction of Se from the soil could be improved using earthworms as an aid to plants.
Show more [+] Less [-]Toxicogenomics provides insights to toxicity pathways of neonicotinoids to aquatic insect, Chironomus dilutus
2020
Wei, Fenghua | Wang, Dali | Li, Huizhen | Xia, Pu | Ran, Yong | Yau, Ching
Neonicotinoid insecticides have posed a great threat to non-target organisms, yet the mechanisms underlying their toxicity are not well characterized. Major modes of action (MoAs) of imidacloprid were analyzed in an aquatic insect Chironomus dilutus. Lethal and sublethal outcomes were assessed in the midges after 96-h exposure to imidacloprid. Global transcriptomic profiles were determined using de novo RNA-sequencing to more holistically identify toxicity pathways. Transcriptional 10% biological potency values derived from ranked KEGG pathways and GO terms were 0.02 (0.01–0.08) (mean (95% confidence interval) and 0.05 (0.04–0.06) μg L⁻¹, respectively, which were more sensitive than those from phenotypic traits (10% lethal concentration: 0.44 (0.23–0.79) μg L⁻¹; 10% burrowing behavior concentration: 0.30 (0.22–0.43) μg L⁻¹). Major MoAs of imidacloprid in aquatic species were identified as follows: the activation of nicotinic acetylcholine receptors (nAChRs) induced by imidacloprid impaired organisms’ nerve system through calcium ion homeostasis imbalance and mitochondrial dysfunction, which posed oxidative stress and DNA damage and eventually caused death of organisms. The current investigation highlighted that imidacloprid affected C. dilutus at environmentally relevant concentrations, and elucidated toxicity pathways derived from gene alteration to individual outcomes, calling for more attention to toxicity of neonicotinoids to aquatic organisms.
Show more [+] Less [-]Benthic cyanobacterial detritus mats in lacustrine sediment: Characterization and odorant producing potential
2020
Qi, Chuang | Zhang, Limin | Fang, Jiaqi | Lei, Bo | Tang, Xiangcheng | Huang, Hexiao | Wang, Zhuosen | Si, Zejun | Wang, Guoxiang
Eutrophic freshwater lake ecosystems are receiving increasing public attention due to a global increase in large-scale harmful cyanobacterial blooms in surface waters. However, the contribution of phytodetritus accumulation in benthic sediments post-bloom remains unclear. In this study, field investigations were performed using microsensors to evaluate benthic phytodetritus mats by measuring TOC/TN ratios, pigments, biodegradable compounds and odorants as descriptive parameters. Results show that the massive amount of phytodetritus trapped by aquatic plants gradually evolved into benthic cyanobacterial detritus mats, which were characterized as anoxic, reductive and low pH. It was confirmed that the occurrence of odorants is more serious in the detritus mats due to decay and decomposition of the accumulated phytodetritus. The mean odorant content in the vegetated zones was 3–52 times higher than that in the unvegetated zones. The dominant odorants were dimethyl trisulfide (DMTS), β-ionone and β-cyclocitral, with mean contents of 52.38 ng·(g·dw)-1, 162.20 ng·(g·dw)-1 and 307.51 ng·(g·dw)-1, respectively, in the sediment. In addition, odorant production appears to be associated with the distribution of biodegradable compounds in the sediment. This is supported by the marked correlation observed between biodegradable compounds and odorants. Multiple regression analysis showed that biodegradable compounds can be used as indicators to predict odorant content in the sediment. It is noteworthy that the odorant trend in the water column and sediment is symmetrical, indicating a risk of diffusion from the sediment to the water column. This study helps to clarifying the contributions of benthic cyanobacterial detritus mats to odorant production in shallow eutrophic lakes. The information provided herein may also be useful for future management of aquatic ecosystems.
Show more [+] Less [-]Occurrence and sources of PCBs, PCNs, and HCB in the atmosphere at a regional background site in east China: Implications for combustion sources
2020
Mao, Shuduan | Zhang, Gan | Li, Jun | Geng, Xiaofei | Wang, Jiaqi | Zhao, Shizhen | Cheng, Zhineng | Xu, Yue | Li, Qilu | Wang, Yan
Multiple types of persistent organic pollutants (POPs), such as polychlorinated biphenyls (PCBs), polychlorinated naphthalenes (PCNs), and hexachlorobenzene (HCB), can be unintentionally released from combustion or thermal industrial processes, which are speculated to be the main sources of these contaminants, as they were banned on production and use since several decades ago. In this study, concentrations and sources of 40 PCBs, 39 PCNs, and HCB were analyzed in air samples collected during the period 2012–2015 at a background site in east China. ΣPCBs, ΣPCNs, and HCB were in the range of 9–341 pg/m³, 6–143 pg/m³, and 14–522 pg/m³, respectively. Seasonal characteristics with high levels in winter and low levels in summer were observed for PCNs and HCB. PCBs also exhibited slightly higher levels in winter. Source apportionment was conducted, using polycyclic aromatic hydrocarbons (PAHs) as combustion sources indicator, combined with principal component analysis (PCA) and positive matrix factorization (PMF) model. The results indicated that the legacy of past produced and used commercial PCBs was the dominant contributor (∼56%) to the selected PCBs in the atmosphere in east China. PCNs were mainly emitted from combustion sources (∼64%), whereas HCB almost entirely originated from combustion process (>90%).
Show more [+] Less [-]Arsenic, chromium, and other elements of concern in fish from remote boreal lakes and rivers: Drivers of variation and implications for subsistence consumption
2020
Lescord, Gretchen L. | Johnston, Thomas A. | Heerschap, Matthew J. | Keller, W (Bill) | Southee, F Meg | O’Connor, Constance M. | Dyer, Richard D. | Branfireun, Brian A. | Gunn, John M.
Eating fish provides numerous health benefits, but it is also a dominant pathway for human exposure to contaminants. Many studies have examined mercury (Hg) accumulation in fish, but fewer have considered other elements, such as arsenic (As) and chromium (Cr). Recently, freshwater fish from several pristine boreal systems across northern Ontario, Canada, have been reported with elevated concentrations of As and Cr for reasons that are not well understood. Our goal was to investigate the ecological and environmental influences over concentrations of As, Cr, and other elements in these fish to better understand what affects metal uptake and the risk to consumers. We measured 10 elements (including As, Cr, Hg) as well as carbon (δ¹³C), nitrogen (δ¹⁵N), and sulfur (δ³⁴S) stable isotopes in 388 fish from 25 lake and river sites across this remote region. These data were used to determine the effect of: 1) trophic ecology; and 2) watershed geology on piscine elemental content. Overall, most element concentrations were low, often below provincial advisory benchmarks (ABs). However, traces of Hg, As, Cr, and selenium (Se) were detected in most fish. Based on their exceedance of their respective ABs, the most restrictive elements on fish consumption in these boreal systems were Hg > As > Cr. Arsenic and Se, but not Cr concentrations were related to fish size and trophic ecology (inferred from δ¹³C and δ¹⁵N), suggesting bioaccumulation of the former elements. Fish with enriched δ³⁴S values, suggestive of anadromous behaviour, had marginally lower Hg but higher Se concentrations. Modeling results suggested a strong effect of site-specific factors, though we found weak trends between piscine elemental content and geological features (e.g., mafic intrusions), potentially due to the broad spatial scale of this study. Results from this study address gaps in our understanding of As and Cr bioaccumulation and will help to inform fish consumption guidelines.
Show more [+] Less [-]