Refine search
Results 151-160 of 506
Catchment scale assessment of macroplastic pollution in the Odaw river, Ghana
2024
Pinto, Rose Boahemaa | Bogerd, Linda | van der Ploeg, Martine | Duah, Kwame | Uijlenhoet, Remko | van Emmerik, Tim H.M.
Catchment-scale plastic pollution assessments provide insights in its sources, sinks, and pathways. We present an approach to quantify macroplastic transport and density across the Odaw catchment, Ghana. We divided the catchment into the non-urban riverine, urban riverine, and urban tidal zones. Macroplastic transport and density on riverbanks and land were monitored at ten locations in December 2021. The urban riverine zone had the highest transport, and the urban tidal zone had the highest riverbank and land macroplastic density. Water sachets, soft fragments, and foam fragments were the most abundant items. Our approach aims to be transferable to other catchments globally.
Show more [+] Less [-]Causes of coastal waters pollution with nutrients, chemicals and plastics worldwide
2024
Micella, Ilaria | Kroeze, Carolien | Bak, Mirjam P. | Strokal, Maryna
Worldwide, coastal waters contain pollutants such as nutrients, plastics, and chemicals. Rivers export those pollutants, but their sources are not well studied. Our study aims to quantify river exports of nutrients, chemicals, and plastics to coastal waters by source and sub-basin worldwide. We developed a new MARINA-Multi model for 10,226 sub-basins. The global modelled river export to seas is approximately 40,000 kton of nitrogen, 1,800 kton of phosphorous, 45 kton of microplastics, 490 kton of macroplastics, 400 ton of triclosan and 220 ton of diclofenac. Around three-quarters of these pollutants are transported to the Atlantic and Pacific oceans. Diffuse sources contribute by 95–100 % to nitrogen (agriculture) and macroplastics (mismanaged waste) in seas. Point sources (sewage) contribute by 40–95 % to phosphorus and microplastics in seas. Almost 45 % of global sub-basin areas are multi-pollutant hotspots hosting 89 % of the global population. Our findings could support strategies for reducing multiple pollutants in seas.
Show more [+] Less [-]Maritime traffic alters distribution of the harbour porpoise in the North Sea
2024
Pigeault, Rémi | Ruser, Andreas | Ramírez-Martínez, Nadya C. | Geelhoed, Steve C.V. | Haelters, Jan | Nachtsheim, Dominik A. | Schaffeld, Tobias | Sveegaard, Signe | Siebert, Ursula | Gilles, Anita
The North Sea is one of the most industrialised marine regions globally. We integrated cetacean-dedicated aerial surveys (2015–2022) with environmental covariates and ship positions from the Automatic Identification System (AIS) to investigate the disturbance radius and duration on harbour porpoise distribution. This study is based on 81,511 km of line-transect survey effort, during which 6511 harbour porpoise groups (8597 individuals) were sighted. Several proxies for ship disturbance were compared, identifying those best explaining the observed distribution. Better model performance was achieved by integrating maritime traffic, with frequent traffic representing the most significant disturbance to harbour porpoise distribution. Porpoises avoided areas frequented distance over time improved model performance, while reasons for the lower performance of predicted ship sound levels remain unclear. This study demonstrates the short-term effects of maritime traffic on harbour porpoise distribution.
Show more [+] Less [-]Analyzing nitrogen dioxide to nitrogen oxide scaling factors for data-driven satellite-based emission estimation methods : A case study of Matimba/Medupi power stations in South Africa
2024
Hakkarainen, Janne | Kuhlmann, Gerrit | Koene, Erik | Santaren, Diego | Meier, Sandro | Krol, Maarten C. | van Stratum, Bart J.H. | Ialongo, Iolanda | Chevallier, Frédéric | Tamminen, Johanna | Brunner, Dominik | Broquet, Grégoire
In this paper, we propose improved nitrogen dioxide (NO2) to nitrogen oxide (NOx) scaling factors for several data-driven methods that are used for the estimation of NOx power plant emissions from satellite observations of NO2. The scaling factors are deduced from high-resolution simulations of power plant plumes with the MicroHH large-eddy simulation model with a simplified chemistry and then applied to Sentinel-5 Precursor (S5P) TROPOspheric Monitoring Instrument (TROPOMI) NO2 satellite observations over the Matimba/Medupi power stations in South Africa. We show that due to the non-linear chemistry the optimal NO2 to NOx scaling factors depend on both the method employed and the specific segments of the plume from which emission estimate is derived. The scaling factors derived from the MicroHH simulations in this study are substantially (more than 50%) higher than the typical values used in the literature with actual NO2 observations. The results highlight the challenge in appropriately accounting for the conversion from NO2 to NOx when estimating point source emissions from satellite NO2 observations.
Show more [+] Less [-]Addition of iron does not ameliorate sulfide toxicity by sargassum influx to mangroves but dampens methane and nitrous oxide emissions
2024
Cobacho, Sara P. | Leemans, Luuk H. | Weideveld, Stefan T.J. | Fu, Xitong | van Katwijk, Marieke M. | Lamers, Leon P.M. | Smolders, Alfons J.P. | Christianen, Marjolijn J.A.
Sargassum spp. strandings in the tropical Atlantic harm local ecosystems due to toxic sulfide levels. We conducted a mesocosm experiment to test the efficacy of iron(III) (hydr)oxides in (a) mitigating sulfide toxicity in mangroves resulting from Sargassum and (b) reducing potentially enhanced greenhouse gas emissions. Our results show that iron addition failed to prevent mangrove mortality caused by highly toxic sulfide concentrations, which reached up to 15,000 μmol l−1 in 14 days; timely removal may potentially prevent mangrove death. Sargassum-impacted mesocosms significantly increased methane, nitrous oxide, and carbon dioxide emissions, producing approximately 1 g CO2-equivalents m−2 h−1 during daylight hours, thereby shifting mangroves from sinks to sources of greenhouse gasses. However, iron addition decreased methane emissions by 62 % and nitrous oxide emissions by 57 %. This research reveals that Sargassum strandings have multiple adverse effects related to chemical and ecological dynamics in mangrove ecosystems, including greenhouse gas emissions.
Show more [+] Less [-]Efficient plastic detection in coastal areas with selected spectral bands
2024
Pérez-García, Ámbar | van Emmerik, Tim H.M. | Mata, Aser | Tasseron, Paolo F. | López, José F.
Marine plastic pollution poses significant ecological, economic, and social challenges, necessitating innovative detection, management, and mitigation solutions. Spectral imaging and optical remote sensing have proven valuable tools in detecting and characterizing macroplastics in aquatic environments. Despite numerous studies focusing on bands of interest in the shortwave infrared spectrum, the high cost of sensors in this range makes it difficult to mass-produce them for long-term and large-scale applications. Therefore, we present the assessment and transfer of various machine learning models across four datasets to identify the key bands for detecting and classifying the most prevalent plastics in the marine environment within the visible and near-infrared (VNIR) range. Our study uses four different databases ranging from virgin plastics under laboratory conditions to weather plastics under field conditions. We used Sequential Feature Selection (SFS) and Random Forest (RF) models for the optimal band selection. The significance of homogeneous backgrounds for accurate detection is highlighted by a 97 % accuracy, and successful band transfers between datasets (87 %–91 %) suggest the feasibility of a sensor applicable across various scenarios. However, the model transfer requires further training for each specific dataset to achieve optimal accuracy. The results underscore the potential for broader application with continued refinement and expanded training datasets. Our findings provide valuable information for developing compelling and affordable detection sensors to address plastic pollution in coastal areas. This work paves the way towards enhancing the accuracy of marine litter detection and reduction globally, contributing to a sustainable future for our oceans.
Show more [+] Less [-]Oyster larvae used for ecosystem restoration benefit from increased thermal fluctuation
2024
Alter, Katharina | Jacobs, Pascalle | Delre, Annalisa | Rasch, Bianka | Philippart, Catharina J.M. | Peck, Myron A.
A bottleneck in restoring self-sustaining beds of the European oyster (Ostrea edulis) is the successful development and settlement of larvae to bottom habitats. These processes are largely governed by temperature but a mechanistic understanding of larval performance across ecologically relevant temperatures is lacking. We reared larvae at low (20–21 °C) and high (20–24 °C) fluctuating temperatures and applied short-term exposures of larvae to temperatures between 16 and 33 °C to assess vital rates and thermal coping ranges. Larval thermal preference was between 25 and 30 °C for both rearing treatments which corresponded with optimum temperatures for oxygen consumption rates and locomotion. Larvae had 5.5-fold higher settling success, however, when reared at the high compared to the low fluctuating temperatures. Higher mean and periods of increased temperature, as projected in a future climate, may therefore enhance recruitment success of O. edulis in northern European habitats.
Show more [+] Less [-]Role of Biotechnology and Genetic Engineering in Bioremediation of Cadmium Pollution
2024
Kumar, A. | Mukherjee, G. | Gupta, S.
Cadmium (Cd) is ubiquitous and an unessential trace element existing in the environment. Anthropogenic activities and applications of synthetic phosphate fertilizers greatly enhance the concentration of Cadmium in the environment, which proves to be carcinogenic. The long-term effects of heavy metals contamination on plants and animals have recently become a major public health concern. Thanks to the application of science and technology, new environmental initiatives can have a lower environmental impact significantly. The role of microbes is very well known and must be considered as potential pollutant removers. Microbial flora can remove heavy metals and oil from contaminated soil and water. In comparison to conventional techniques, bioremediation itself proved to be a more potent technique because the established mechanisms render it ineffective. Biotechnological advancements are inherently harmful to the environment because they have the potential to reduce metal pollution. Pollutants in the environment can be effectively removed using bioremediation. Both native and introduced species can thrive in a microorganism-friendly environment.
Show more [+] Less [-]Response and Tolerance of Cyanobacterial Exopolysaccharides to Rice Field Herbicide 2,4-D
2024
Ryntathiang, Sukjailin | Sachu, Meguovilie | Syiem, Mayashree B.
This study aimed to check how herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) affects the production of EPS and its composition, growth, and biomass, as well as morphology in a cyanobacterial species isolated from a rice field in Meghalaya, India. Compared to the control cells, the growth of the organism measured in terms of chlorophyll concentration increased after being exposed to 10 and 20 ppm 2,4-D. However, cultures treated with 30 and 40 ppm experienced a decrease in their growth. Likewise, the biomass content of the organism experienced a minuscule increase in content upon exposure to 10 and 20 ppm 2,4-D but was compromised upon exposure to higher doses. When exposed to 10 ppm, the total EPS content, which includes the RPS and CPS content, showed a substantial increase. Maximum EPS production was seen at 20 ppm 2,4-D. However, exposure to 30 and 40 ppm 2,4-D, EPS production in the organism experienced a significant reduction, respectively. All components of EPS, such as uronic acid, neutral sugar, and proteins, individually showed an increase in 10 and 20 ppm 2, 4-D. A similar trend was seen in the organism’s bio-flocculating activity, which increased when exposed to 10 and 20 ppm, respectively. However, this activity in cells exposed to 30 and 40 ppm 2,4-D was severely reduced. Not only the content of EPS but the rate of EPS production was also enhanced in lower concentrations of 2,4-D. Although exposure to 30 ppm 2,4-D, the rate of EPS production was not significantly compromised, 40 ppm exposure adversely affected the rate of EPS production. Furthermore, visualization using scanning electron microscopy revealed the morphological changes induced by the herbicide 2,4-D.
Show more [+] Less [-]Biodegradation of Cellulosic Wastes and Deinking of Colored Paper with Isolated Novel Cellulolytic Bacteria
2024
Sarwan, Jyoti | Bose, Jagadeesh Chandra | Kumar, Shivam | Bhargav, Shruti Singh | Dixit, Sharad Kumar | Sharma, Muskan | Mittal, Komal | Kumar, Gurmeet | Uddin, Nazim
Biofuels are the cheapest source of energy, and the continuous decline of traditional sources of energy with the increasing population leads to looking for alternatives to reduce the consumption of traditional sources of energy. Bioethanol production from lignocellulosic wastes and cellulosic wastes is not a new approach for fuel production but a cheap and accessible way for the production of fuel. Bacillus is one of the major species that can act as a source of diversified enzymes. In this study, it was emphasized on screening and isolation of a novel, characterization, and best catalytic action on both celluloses and proteins in the presence of different carbon and nitrogen sources. It was observed the effective catalytic breakdown of cellulose with the crude enzyme to glucose allowed fur for fermentation with Saccharomyces, ultimately leading to the generation of alcohol. The study aims to isolate the microbes that can produce cellulases and enzymes and could be used for biodegradation to produce ethanol in the reaction. The maximum enzyme activity was achieved at 3.112 UI with optimized pH and temperature, and the maximum conversion of sugars into alcohol was about 70% in the newspaper, cartons, colored paper, and disposable paper cups. An essential observation was the decolorization of the origami craft paper within 24 hours. The study was involved in enhancing the maximum Enzyme activity of cellulases from different cellulosic raw materials. Hence, it was achieved by JCB strain, optimization of pH, temperature, and acids for the biodegradation. The presence of peaks at 3200 and 2900 was a confirmation of ethanol bonds in the biodegradation reaction mixtures.
Show more [+] Less [-]