Refine search
Results 1511-1520 of 7,214
Synergistic effects of ozone/peroxymonosulfate for isothiazolinone biocides degradation: Kinetics, synergistic performance and influencing factors
2022
Yang, Zheng-Wei | Wang, Wen-Long | Lee, Min-Yong | Wu, Qian-Yuan | Guan, Yun-Tao
Synergistic effects of ozone (O₃) and peroxymonosulfate (PMS, HSO₅⁻) for isothiazolinone biocides degradation was studied. The synergistic ozonation process (O₃/PMS) increased the efficiency of methyl-isothiazolinone (MIT) and chloro-methyl-isothiazolinone (CMIT) degradation to 91.0% and 81.8%, respectively, within 90 s at pH 7.0. This is 30.6% and 62.5% higher than the corresponding ozonation efficiency, respectively. Total radical formation value (Rcₜ,R) for the O₃/PMS process was 24.6 times that of ozonation alone. Calculated second-order rate constants for the reactions between isothiazolinone biocides and ▪ (kSO₄₋,MIT and kSO₄₋,CMIT) were 8.15 × 10⁹ and 4.49 × 10⁹ M⁻¹ s⁻¹, respectively. Relative contributions of O₃, hydroxyl radical (OH) and ▪ oxidation to MIT and CMIT removal were estimated, which were 15%, 45%, and 40% for O₃, OH and ▪ oxidation to MIT, and 1%, 67%, and 32% for O₃, OH and ▪ oxidation to CMIT at pH 7.0, respectively. Factors influencing the O₃/PMS process, namely the solution pH, chloride ions (Cl⁻), and bicarbonate (HCO₃⁻), were evaluated. Increasing the solution pH markedly accelerated O₃ decay and OH and ▪ formation, thus weakening the relative contribution of O₃ oxidation while enhancing that of OH and ▪. Cl⁻ had a negligible effect on MIT and CMIT degradation. Under the dual effect of bicarbonate (HCO₃⁻) as inhibitor and promoter, low concentrations (1–2 mM) of bicarbonate weakly promoted MIT and CMIT degradation, while high concentrations (10–20 mM) induced strong inhibition. Lastly, oxidation performance of O₃ and O₃/PMS processes for MIT and CMIT degradation in different water matrices was compared.
Show more [+] Less [-]Impact of brominated flame retardants on lipid metabolism: An in vitro approach
2022
Maia, Maria Luz | Sousa, Sara | Pestana, Diogo | Faria, Ana | Teixeira, Diana | Delerue-Matos, Cristina | Domingues, Valentina Fernandes | Calhau, Conceição
Brominated flame retardants (BFRs) are chemicals employed to lower the flammability of several objects. These endocrine disruptor chemicals are lipophilic and persistent in the environment. Due to these characteristics some have been restricted or banned by the European Union, and replaced by several new chemicals, the novel BFRs (NBFRs). BFRs are widely detected in human samples, such as adipose tissue and some were linked with altered thyroid hormone levels, liver toxicity, diabetes and metabolic syndrome in humans. However, the disturbance in lipid metabolism caused by BFRs with emphases to NBFRs remains poorly understood. In this study, we used a pre-adipocyte (3T3-L1) cell line and a hepatocyte (HepG2) cell line to investigate the possible lipid metabolism disruption caused by four BFRs: hexabromobenzene (HBB), pentabromotoluene (PBT), 2-ethylhexyl-2,3,4,5-tetrabromobenzoate (TBB) and hexabromocyclododecane (HBCD). For that purpose, proliferation and Oil Red O assays, as well as, medium fatty acids profile evaluation using Gas chromatography and RNA extraction for quantitative RT-PCR assays were performed. We detected a significant reduction in the proliferation of preadipocytes and an increased lipid accumulation during differentiation caused by HBB. This BFR also lead to a significant increased expression of IL-1β and decreased expression of PGC-1α and adiponectin. Nevertheless, PBT, TBB and HBCD show to increase lipid accumulation in hepatocytes. PBT also display a significant increase of PPARγ gene expression. Lipid accumulation in the cells can occur by diverse mechanisms depending on the BFR. These results highlight the importance of endocrine disruptor compounds in obesity etiopathogeny.
Show more [+] Less [-]Air pollution, white matter microstructure, and brain volumes: Periods of susceptibility from pregnancy to preadolescence
2022
Binter, Anne-Claire | Kusters, Michelle S.W. | van den Dries, Michiel A. | Alonso, Lucia | Lubczyńska, Małgorzata J. | Hoek, Gerard | White, Tonya | Iñiguez, Carmen | Tiemeier, Henning | Guxens, Mònica
Air pollution exposure during early-life is associated with altered brain development, but the precise periods of susceptibility are unknown. We aimed to investigate whether there are periods of susceptibility of air pollution between conception and preadolescence in relation to white matter microstructure and brain volumes at 9–12 years old. We used data of 3515 children from the Generation R Study, a population-based birth cohort from Rotterdam, the Netherlands (2002–2006). We estimated daily levels of nitrogen dioxide (NO2), and particulate matter (PM2.5 and PM2.5absorbance) at participants’ homes during pregnancy and childhood using land-use regression models. Diffusion tensor and structural brain images were obtained when children were 9–12 years of age, and we calculated fractional anisotropy and mean diffusivity, and several brain structure volumes. We performed distributed lag non-linear modeling adjusting for socioeconomic and lifestyle characteristics. We observed specific periods of susceptibility to all air pollutants from conception to age 5 years in association with lower fractional anisotropy and higher mean diffusivity that survived correction for multiple testing (e.g., −0.85 fractional anisotropy (95%CI -1.43; −0.27) per 5 μg/m³ increase in PM2.5 between conception and 4 years of age). We also observed certain periods of susceptibility to some air pollutants in relation to global brain and some subcortical brain volumes, but only the association between PM2.5 and putamen survived correction for multiple testing (172 mm³ (95%CI 57; 286) per 5 μg/m³ increase in PM2.5 between 4 months and 1.8 year of age). This study suggested that conception, pregnancy, infancy, toddlerhood, and early childhood seem to be susceptible periods to air pollution exposure for the development of white matter microstructure and the putamen volume. Longitudinal studies with repeated brain outcome measurements are needed for understanding the trajectories and the long-term effects of exposure to air pollution.
Show more [+] Less [-]The participation of nitric oxide in hydrogen sulphide-mediated chromium tolerance in pepper (Capsicum annuum L) plants by modulating subcellular distribution of chromium and the ascorbate-glutathione cycle
2022
Kaya, Cengiz | Ugurlar, Ferhat | Ashraf, Muhammed | El-Sheikh, Mohamed A. | Bajguz, Andrzej | Ahmad, Parvaiz
The promising response of chromium-stressed (Cr(VI)–S) plants to hydrogen sulphide (H₂S) has been observed, but the participation of nitric oxide (NO) synthesis in H₂S-induced Cr(VI)–S tolerance in plants remains to be elucidated. It was aimed to assess the participation of NO in H₂S-mediated Cr(VI)–S tolerance by modulating subcellular distribution of Cr and the ascorbate-glutathione (AsA-GSH) cycle in the pepper seedlings. Two weeks following germination, plants were exposed to control (no Cr) or Cr(VI)–S (50 μM K₂Cr₂O₇) for further two weeks. The Cr(VI)–S-plants grown in nutrient solution were supplied with 200 μM sodium hydrosulphide (NaHS, donor of H₂S), or NaHS plus 100 μM sodium nitroprusside (SNP, a donor of NO). Chromium stress suppressed plant growth and leaf water status, while elevated proline content, oxidative stress, and the activities of AsA-GSH related enzymes, as well as endogenous H₂S and NO contents. The supplementation of NaHS increased Cr accumulation at root cell walls and vacuoles of leaves as soluble fraction to reduce its toxicity. Furthermore it limited oxidative stress, improved plant growth, modulated leaf water status, and the AsA-GSH cycle-associated enzymes’ activities, as well as it further improved H₂S and NO contents. The positive effect of NaHS was found to be augmented on those parameters in the CrS-plants by the SNP supplementation. However, 0.1 mM cPTIO, the scavenger of NO, inverted the prominent effect of NaHS by decreasing NO content. The supplementation of SNP along with NaHS + cPTIO reinstalled the positive effect of NaHS by restoring NO content, which suggested that NO might have a potential role in H₂S-induced tolerance to Cr(VI)–S in pepper plants by stepping up the AsA-GSH cycle.
Show more [+] Less [-]Effects of microplastic sorption on microbial degradation of halogenated polycyclic aromatic hydrocarbons in water
2022
Sun, Qing | Ren, Shu-Yan | Ni, Hong-Gang
Halogenated PAHs (HPAHs) are ubiquitous in the environment and have a toxicity similar to that of dioxin. Microplastics exist widely in the environment, and their sorption allows them to act as carriers of HPAHs, potentially changing the bioavailability of HPAHs. However, to the best of our knowledge related studies are limited. In this study, degrading bacteria of five HPAHs were cultivated from mangrove sediments. Among them, the Hyphomicrobium genus has good degradation ability on 9−BrAnt, 2−BrPhe and 2−ClPhe. The degradation process is in line with the first−order degradation kinetic characteristics. The kinetic equations of five kinds of HPAHs showed that the degradation half−lives are 0.65 days (2−BrFle), 0.79 days (9−ClPhe), 1.50 days (2−ClAnt), 5.94 days (9−BrPhe) and 14.1 days (9−BrAnt). The greater the number of benzene rings and the heavier the halogen substituents, the slower the degradation of HPAHs. The sorption of microplastics inhibited the biodegradation of HPAHs, and the degradation half−life of HPAHs will be extended from 0.65 to 14.1 days (the average is 4.59 days) to 1.71–9.93 days (average 5.40 days) for PA, 0.70–35.2 days (average 12.8 days) for PE, 6.02–28.2 (average 15.7 days) days for POM, and 4.60–24.0 (average 19.2 days) days for PP, which is mainly related to the partition coefficient between microplastics and water. This study provides a reference for reducing the uncertainty of the ecological risk assessment of HOCs in the aquatic environment.
Show more [+] Less [-]Investigation of organic carbon profiles and sources of coarse PM in Los Angeles
2022
Tohidi, Ramin | Altuwayjiri, Abdulmalik | Sioutas, Constantinos
Source apportionment analyses are essential tools to determine sources of ambient coarse particles (2.5 <dₚ < 10 μm) and to disentangle their association and contribution from other pollutants, particularly PM₂.₅ (<2.5 μm). A semi-continuous sampling campaign was conducted using two virtual impactors/concentrators to enhance coarse particulate matter concentrations coupled with an online thermal-optical EC/OC monitor to quantify coarse PM–bound organic carbon volatility fractions (OC₁-OC₄) in central Los Angeles during the winter, spring, and summer of 2021. The total OC and its volatility fraction concentrations, meteorological parameters (i.e., wind speeds and relative humidity), vehicle miles traveled (VMT), and gaseous source tracers (i.e., O₃ and NO₂) were used as inputs to positive matrix factorization (PMF) model. A 3-factor solution identified vehicular emissions (accounting for 46% in the cold phase and 26% in the warm phase of total coarse OC concentrations), secondary organic carbon (27% and 37%), and re-suspended dust (27% and 37%) as the primary organic carbon sources of coarse PM. The re-suspended dust factor showed a higher contribution of more volatile organic carbons (i.e., OC₁ up to 77%) due to their re-distribution on dust particles, whereas the SOA factor was the dominant contributor to less volatile organic aerosols (i.e., OC₄ up to 54%), which are the product of reactions at high relative humidity (RH). Our findings revealed that the total OC concentrations in the coarse size range were comparable with those of previous studies in the area, underscoring the challenges in curtailing coarse PM-bound OC sources and the necessity of developing effective emission control regulations on coarse PM. The results from the current study provide insights into the seasonal and temporal variation of total OC and its volatility fractions in Los Angeles.
Show more [+] Less [-]Sublethal biochemical, histopathological and genotoxicological effects of short-term exposure to ciprofloxacin in catfish Rhamdia quelen
2022
Akiyama Kitamura, Rafael Shinji | Vicentini, Maiara | Perussolo, Maiara Carolina | Lirola, Juliana Roratto | Cirilo dos Santos, Camilla Freitas | Moreira Brito, Júlio César | Cestari, Marta Margarete | Prodocimo, Maritana Mela | Gomes, Marcelo Pedrosa | Silva de Assis, Helena Cristina
Ciprofloxacin (Cipro) is commonly detected in water worldwide, however, the ecotoxicological effects to aquatic biota is still not fully understood. In this study, using multiple biomarkers, it was investigated sublethal effects of short-term exposure to Cipro concentrations (1, 10 and 100 μg.L⁻¹) in the Neotropical catfish Rhamdia quelen compared to non-exposure treatment (Control). After 96 h of exposure, the fishes were anesthetized for blood collection to hematological and genotoxicity biomarkers analysis. After euthanasia, the brain and muscle were sampled for biochemical biomarkers analyses. Gills, liver and posterior kidney for genotoxicity, biochemical and histopathological biomarkers analysis and anterior intestine for histopathological biomarkers analysis. Genotoxicity was observed in all tissues, regardless of the Cipro concentrations. Hematological alterations, such as reduction of the number of erythrocytes and leucocytes, as well as in hematocrit concentration and histopathological damages, such as reduction of microridges in gill epithelium and necrosis in liver and posterior kidney, occurred mainly at 100 μg.L⁻¹. In addition, at 100 μg.L⁻¹, Cipro increased antioxidant system activity (Catalase in liver and posterior kidney). These results demonstrated that under short-term exposure, Cipro causes toxic effects in R. quelen that demands attention and surveillance of environmental aquatic concentrations of this antibiotic.
Show more [+] Less [-]Cropland nitrogen dioxide emissions and effects on the ozone pollution in the North China plain
2022
Wang, Ruonan | Bei, Naifang | Wu, Jiarui | Li, Xia | Liu, Suixin | Yu, Jiaoyang | Jiang, Qian | Tie, Xuexi | Li, Guohui
Soil nitrogen dioxide (NOX = NO₂ + NO) emissions have been measured and estimated to be the second most significant contributor to the NOX burden following the fossil fuel combustion source globally. NOX emissions from croplands are subject to being underestimated or overlooked in air pollution simulations of regional atmospheric chemistry models. With constraints of ground and space observations of NO₂, the WRF-Chem model is used to investigate the cropland NOX emission and its contribution to the near-surface ozone (O₃) pollution in North China Plain (NCP) during a growing season as a case study. Model simulations have revealed that the cropland NOX emissions are underestimated by around 80% without constraints of satellite measured NO₂ column densities. The biogenic NOX source is estimated to account for half of the anthropogenic NOX emissions in the NCP during the growing season. Additionally, the cropland NOX source contributes around 5.0% of the maximum daily average 8h O₃ concentration and 27.7% of NO₂ concentration in the NCP. Our results suggest the agriculture NOX emission exerts non-negligible impacts on the summertime air quality and needs to be considered when designing emission abatement strategies.
Show more [+] Less [-]Increased transfer of trace metals and Vibrio sp. from biodegradable microplastics to catfish Clarias gariepinus
2022
Jang, Faddrine Holt | Wong, Changi | Choo, Jenny | Aun Sia, Edwin Sien | Mujahid, Aazani | Müller, Moritz
Microplastic ingestion has been documented in various aquatic species. This causes physical damage, and additionally contaminated microplastics transfer attached pollutants and microbial pathogens to ingesting organisms. Continued metal accumulation can lead to toxicity and adverse health effects; attached microbial pathogens can cause dysbiosis - which lowers host immunity and promotes infections. Catfish, Clarias gariepinus, are a major food source in Southeast Asia, a hotspot of plastic pollution. This study aimed to quantify the transfer of the trace metals copper (Cu) and lead (Pb) -at environmentally relevant concentrations-from microplastics (polyamide 12, PA12, and polylactic acid, PLA) to catfish. Fish were reared for three months and exposed to seven different combinations of feed, supplemented with plastics and metals. At monthly intervals, fish gills, intestines, liver, and edible muscles were analysed for Cu and Pb concentrations using ICP-OES, and the intestines content assessed for Vibrio sp.. Our results showed that biodegradable PLA transferred higher amounts of metals to catfish than expected and also led to increased Vibrio counts in the intestines compared to PA12. Trace metal accumulation was significantly different in varying tissues, with highest concentrations observed in the gills, followed by liver, intestines, and lastly edible muscles. The results of this study further support the existing evidence that microplastics act as efficient shuttles to concentrate and transfer metals. They also indicate that their uptake can cause dysbiosis (increased numbers of Vibrio sp.). Most importantly, however, our study highlights that biodegradable polymers, such as PLA, could actually pose a greater environmental threat when ingested compared to the more common polymers such as PA12.
Show more [+] Less [-]Effects of short-term soil exposure of different doses of ZnO nanoparticles on the soil environment and the growth and nitrogen fixation of alfalfa
2022
Sun, Hongda | Peng, Qingqing | Guo, Jiao | Zhang, Haoyue | Bai, Junrui | Mao, Hui
The extensive application of nanomaterials has increased their levels in soil environments. Therefore, clarifying the process of environmental migration is important for environmental safety and human health. In this study, alfalfa was used to determine the effects of different doses of ZnO nanoparticles (NPs) on the growth of alfalfa and the soil environment. Results showed that the alfalfa biomass was inversely proportional to the exposure concentration of ZnO NPs. The Zn concentration in the alfalfa tissue and the exposure dose presented a significant positive correlation. A high concentration of ZnO NPs decreased the nitrogen-fixing area of root nodules while the number of bacteroids and root nodules, which in turn affected the nitrogen-fixing ability of alfalfa. At the same time, it caused different degrees of damage to the root nodules and root tip cells of alfalfa. A high dose of ZnO NPs decreased the relative abundance and diversity of the soil microorganisms. Therefore, short-term and high-dose exposure of ZnO NPs causes multiple toxicities in plants and soil environments.
Show more [+] Less [-]