Refine search
Results 1561-1570 of 1,955
Energy reserves and accumulation of metals in the ground beetle Pterostichus oblongopunctatus from two metal-polluted gradients Full text
2013
Bednarska, Agnieszka J. | Stachowicz, Izabela | Kuriańska, Ligia
Living in an area chronically polluted with metals is usually associated with changes in the energy distribution in organisms due to increased energy expenses associated with detoxification and excretion processes. These expenses may be reflected in the available energy resources, such as lipids, carbohydrates, and proteins. In this context, the energy status of Pterostichus oblongopunctatus (Coleoptera: Carabidae) was studied in two metal pollution gradients near Olkusz and Miateczko Śląskie in southern Poland. Both regions are rich in metal ores, and the two largest Polish zinc smelters have been operating there since the 1970s. Beetles were collected from five sites at each gradient. Zinc and cadmium concentrations were measured in both the soil and the beetles. The possible reduction in energy reserves as a cost of detoxifying assimilated metals was evaluated biochemically by determining the total lipid, carbohydrates, and protein contents. At the most polluted sites, the Zn concentration in the soil organic layer reached 2,906 mg/kg, and the Cd concentration reached 55 mg/kg. Body Zn and Cd concentrations increased with increasing soil Zn and Cd concentrations (p = 0.003 and p = 0.0001, respectively). However, no relationship between pollution level and energetic reserves was found. The results suggest that populations of P. oblongopunctatus inhabiting highly metal-polluted sites are able to survive without any serious impact on their energy reserves, though they obviously have to cope with elevated body metal concentrations.
Show more [+] Less [-]Comparative study of biochemical and immunological biomarkers in three marine bivalves exposed at a polluted site Full text
2013
Cotou, Efthimia | Tsangaris, Catherine | Henry, Morgane
A battery of biochemical and immunological biomarkers used for pollution assessment were measured for first time in the clams Venus verrucosa and Callista chione and were compared with those of the mussel Mytilus galloprovincialis, a well-established indicator organism utilized in numerous environmental monitoring programs. Clams and mussel were transplanted at a polluted and a reference site or maintained at the laboratory. Among biochemical biomarkers, acetylcholinesterase did not differ at the polluted site in all species, but there was a significant difference between the mussel and the clams, glutathione S-transferase showed a clear inhibition at the polluted site in all species and a significant difference between the two clams was also indicated, while catalase activities were increased only in V. verrucosa at the polluted site and not in mussel or the other clam. Immunological biomarkers responses were also pronounced at the polluted site. Lysozyme activity was species-dependent whereas respiratory burst activity measured as luminol-dependent chemiluminescence (CL) was site and stimulus dependent, and it was evident in M. galloprovincialis and V. verrucosa and not in C. chione. Further investigation focused on biochemical and immunological biomarkers related with the oxidative mechanisms in clams will strengthen and expand their use as bioindicators for pollution assessment.
Show more [+] Less [-]Application of dynamic models to estimate greenhouse gas emission by wastewater treatment plants of the pulp and paper industry Full text
2013
Ashrafi, Omid | Yerushalmi, Laleh | Haghighat, Fariborz
Greenhouse gas (GHG) emission in wastewater treatment plants of the pulp-and-paper industry was estimated by using a dynamic mathematical model. Significant variations were shown in the magnitude of GHG generation in response to variations in operating parameters, demonstrating the limited capacity of steady-state models in predicting the time-dependent emissions of these harmful gases. The examined treatment systems used aerobic, anaerobic, and hybrid—anaerobic/aerobic—biological processes along with chemical coagulation/flocculation, anaerobic digester, nitrification and denitrification processes, and biogas recovery. The pertinent operating parameters included the influent substrate concentration, influent flow rate, and temperature. Although the average predictions by the dynamic model were only 10 % different from those of steady-state model during 140 days of operation of the examined systems, the daily variations of GHG emissions were different up to ±30, ±19, and ±17 % in the aerobic, anaerobic, and hybrid systems, respectively. The variations of process variables caused fluctuations in energy generation from biogas recovery by ±16, ±17, and ±14 % in the three examined systems, respectively. The lowest variations were observed in the hybrid system, showing the stability of this particular process design.
Show more [+] Less [-]Ligninase-mediated transformation of 4,4′-dibromodiphenyl ether (BDE 15) Full text
2013
Feng, Yiping | Mao, Liang | Chen, Yijun | Gao, Shixiang
The structurally related hydroxylated polybrominated diphenyl ether (PBDE) like hydroxylated 4,4′-dibromodiphenyl ether widely occur in precipitation, surface water, and biotic media. The origins of hydroxylated PBDEs (OH-PBDEs) are of particular interest due to their greater toxic potencies than the corresponding PBDEs. We studied the transformation behavior and products of 4,4′-dibromodiphenyl ether (BDE 15) mediated by lignin peroxidase (LiP), an extracellular enzyme that is produced by certain white rot fungus and is widely present in the natural environment. We found that BDE 15 can be effectively transformed through the reaction mediated by LiP, and two different mono-OH-dibromodiphenyl ethers were identified by using gas chromatography–mass spectrometry (GC-MS) and GC-MS/MS. In particular, we compared the reaction behavior for systems variously containing natural organic matter (NOM) and/or veratryl alcohol (VA), a metabolite that certain fungus produces along with LiP in nature. It was found that the VA’s enhancement effect on LiP performance was impaired by the presence of NOM. The findings in this study provide useful information for better understanding the origins of OH-PBDEs found in the environment.
Show more [+] Less [-]Immobilization of aluminum with mucilage secreted by root cap and root border cells is related to aluminum resistance in Glycine max L Full text
2013
Cai, Miaozhen | Wang, Ning | Xing, Chenghua | Wang, Fangmei | Wu, Kun | Du, Xing
The root cap and root border cells (RBCs) of most plant species produced pectinaceous mucilage, which can bind metal cations. In order to evaluate the potential role of root mucilage on aluminum (Al) resistance, two soybean cultivars differing in Al resistance were aeroponic cultured, the effects of Al on root mucilage secretion, root growth, contents of mucilage-bound Al and root tip Al, and the capability of mucilage to bind Al were investigated. Increasing Al concentration and exposure time significantly enhanced mucilage excretion from both root caps and RBCs, decreased RBCs viability and relative root elongation except roots exposed to 400 μM Al for 48 h in Al-resistant cultivar. Removal of root mucilage from root tips resulted in a more severe inhibition of root elongation. Of the total Al accumulated in root, mucilage accounted 48-72 and 12-27 %, while root tip accounted 22-52 and 73-88 % in Al-resistant and Al-sensitive cultivars, respectively. A (27)Al nuclear magnetic resonance spectrum of the Al-adsorbed mucilage showed Al tightly bound to mucilage. Higher capacity to exclude Al in Al-resistant soybean cultivar is related to the immobilization and detoxification of Al by the mucilage secreted from root cap and RBCs.
Show more [+] Less [-]Potential of ultrafiltration for organic matter removal in the polymer industry effluent based on particle size distribution analysis Full text
2013
Doğruel, Serdar | Çokgör, Emine Ubay | Ince, Orhan | Sözen, Seval | Orhon, Derin
The purpose of the study was the experimental evaluation of ultrafiltration as a potential innovative technology for the removal of organic matter of around 15,000 mg chemical oxygen demand (COD) per liter in the polymer industry wastewater. Particle size distribution (PSD) analysis served as the major experimental instrument along with conventional chemical settling. Biodegradation characteristics of the remaining COD after ultrafiltration were determined by model interpretation of the corresponding oxygen uptake rate (OUR) profile. The study first involved a detailed characterization of the polymer wastewater including PSD analysis of the COD content. Chemical treatability was investigated using lime alone and with ferric chloride as coagulants followed with a PSD assessment of the chemically settled effluent. Modeling of the OUR profile generated by the ultrafiltration effluent defined related biodegradation kinetics and provided information on the overall COD removal potential. PSD analysis indicated that more than 70 % of the total COD accumulated in the 220- to 450-nm size range. It indicated that ultrafiltration was potentially capable of removing more than 90 % of the COD with an effluent lower than 1,500 mg COD/L. Chemical settling with 750 mg/L of FeCl₃ dosing at a pH of 7.0 provided a similar performance. The ultrafiltration effluent included mainly hydrolysable COD and proved to be biodegradable, with the process kinetics compatible with domestic sewage. PSD evaluation proved to be a valuable scientific instrument for underlining the merit of ultrafiltration as the appropriate innovative technology for polymer wastewater, removing the major portion of the COD in a way that is suitable for recovery and reuse and producing a totally biodegradable effluent.
Show more [+] Less [-]Validation of the species sensitivity distribution in retrospective risk assessment of herbicides at the river basin scale—the Scheldt river basin case study Full text
2013
Jesenska, Sona | Nemethova, Sabina | Blaha, Ludek
Species sensitivity distribution (SSD) is commonly used in prospective risk assessment to derive predicted no-effect concentrations, toxicity exposure ratios, and environmental quality standards for individual chemicals such as pesticides. The application of SSD in the retrospective risk assessment of chemical mixtures at the river basin scale (i.e., the estimation of "multiple substance potentially affected fractions" [msPAFs]) has been suggested, but detailed critical assessment of such an application is missing. The present study investigated the impact of different data validation approaches in a retrospective model case study focused on seven herbicides monitored at the Scheldt river basin (Belgium) between 1998 and 2009. The study demonstrated the successful application of the SSD approach. Relatively high impacts of herbicides on aquatic primary producers were predicted. Often, up to 40 % of the primary producer communities were affected, as predicted by chronic msPAF, and in some cases, the predicted impacts were even more pronounced. The risks posed by the studied herbicides decreased during the 1998-2009 period, along with decreasing concentrations of highly toxic pesticides such as simazine or isoproturon. Various data validation approaches (the removal of duplicate values and outliers, the testing of different exposure durations and purities of studied herbicides, etc.) substantially affected SSD at the level of individual studied compounds. However, the time-consuming validation procedures had only a minor impact on the outcomes of the retrospective risk assessment of herbicide mixtures at the river basin scale. Selection of the appropriate taxonomic group for SSD calculation and selection of the species-specific endpoint (i.e., the most sensitive or average value per species) were the most critical steps affecting the final risk values predicted. The present validation study provides a methodological basis for the practical use of SSD in the retrospective risk assessment of chemical mixtures.
Show more [+] Less [-]Utilisation of chemically stabilized arsenic-contaminated soil in a landfill cover Full text
2013
Kumpiene, Jurate | Desogus, Paolo | Schulenburg, Sven | Arenella, Mariarita | Renella, Giancarlo | Brännvall, Evelina | Lagerkvist, Anders | Andreas, Lale | Sjöblom, Rolf
The aim of the study was to determine if an As-contaminated soil, stabilized using zerovalent iron (Fe(0)) and its combination with gypsum waste, coal fly ash, peat, or sewage sludge, could be used as a construction material at the top layer of the landfill cover. A reproduction of 2 m thick protection/vegetation layer of a landfill cover using a column setup was used to determine the ability of the amendments to reduce As solubility and stimulate soil functionality along the soil profile. Soil amendment with Fe(0) was highly efficient in reducing As in soil porewater reaching 99 % reduction, but only at the soil surface. In the deeper soil layers (below 0.5 m), the Fe treatment had a reverse effect, As solubility increased dramatically exceeding that of the untreated soil or any other treatment by one to two orders of magnitude. A slight bioluminescence inhibition of Vibrio fischeri was detected in the Fe(0) treatment. Soil amendment with iron and peat showed no toxicity to bacteria and was the most efficient in reducing dissolved As in soil porewater throughout the 2 m soil profile followed by iron and gypsum treatment, most likely resulting from a low soil density and a good air diffusion to the soil. The least suitable combination of soil amendments for As immobilization was a mixture of iron with coal fly ash. An increase in all measured enzyme activities was observed in all treatments, particularly those receiving organic matter. For As to be stable in soil, a combination of amendments that can keep the soil porous and ensure the air diffusion through the entire soil layer of the landfill cover is required.
Show more [+] Less [-]Analysis of the association between air pollution and allergic diseases exposure from nearby sources of ambient air pollution within elementary school zones in four Korean cities Full text
2013
Kim, H.-H. | Lee, C.-S. | Jeon, J.-M. | Yu, S.-D. | Lee, C. W. | Park, J.-H. | Shin, D.-C. | Lim, Y.-W.
The objectives of this study were to survey elementary school students regarding the environmental conditions of their elementary schools and to assess the relationship between air pollution and allergic disease using the International Study of Asthma and Allergies in Childhood (ISAAC) questionnaire. Therefore, this study was designed as a cross-sectional study. In this study, seven elementary schools were selected and they were classified into three categories. The selection included one school with no traffic-related or other pollutants, three with traffic-related pollutants, and three with traffic-related and other pollutants from industrial and filling station sources. The ISAAC questionnaire survey was given to all of the students except to those in the 1st grade who were presumed to be less likely to be exposed to the school environment than the remainder of the students attending those seven schools. The assessment of allergic disease was conducted on a total of 4,545 students. Three school zones with critical exposure were selected within each school and they were evaluated based on the levels of black carbon (BC), PM₁₀, SO₂, NO₂, and O₃. There was a significant increase in the risks based on the odds ratios of treatment experiences (within 1 year) for allergy-related diseases such as asthma and allergic rhinitis (a) in the school group with traffic-related pollutants and the school group with complex pollutants were 2.12 (1.41–3.19) and 1.59 (1.06–2.37), respectively, in comparison to the school groups with no exposure to pollutants. This was determined based on the odds ratio of symptoms and treatment experiences for allergy-related diseases by group based on the home town zone as a reference. Also, in the case of atopic dermatitis, the odds ratio of treatment experiences (within 1 year) was 1.42 (1.02–1.97), which indicated elevated risks compared to the students in the S1 school. A regression analysis was used to assess the relationship between the substances and the symptomatic experiences within the last year. There were significant increases in the odds ratio of the symptoms associated with allergic rhinitis and the BC and SO₂in the complex pollution areas. The results of the assessment of the relationship between atopic dermatitis-associated symptoms and O3 showed that the odds ratio increased with statistical significance.
Show more [+] Less [-]Conservation and ecofriendly utilization of wetlands associated with the Three Gorges Reservoir Full text
2013
Willison, J. H Martin | Li, Ruoxi | Yuan, Xingzhong
The Three Gorges Dam on the Yangtze River in China has created a major reservoir in which the water level fluctuates annually by about 30 m, generating a drawdown zone of up to 350 km(2) in summer. Since construction of the dam, there has been scientific and public interest in how to use the drawdown zone resources in environmentally sustainable ways. To this end, and with government support, an international conference was held in Chongqing Municipality (China) in October 2011 on the subject of conservation and ecofriendly utilization of wetlands in the Three Gorges Reservoir. The conference proceedings were subsequently published in the Journal of Chongqing Normal University. The proceedings reports are reviewed here in the context of other relevant literature. The proceedings included papers on ecology, ecodesign and ecological engineering, erosion control, plant production and carbon sequestration, phytoremediation of pollution, hydrosystem management, and others. Several of the reports derive from experimental work conducted at a research field station on the Three Gorges Reservoir situated in Kaixian County, Chongqing Municipality. Plant communities in the drawdown zone are declining in diversity and evolving. Experimental plantings of flood-tolerant edible hydrophytes in a dike-pond system reveal their potential to provide economic returns for farmers, and flooding-tolerant trees, such as cypresses, also show promising results for stabilizing soils in the drawdown zone. Flood-tolerant natural plant communities vary strongly with depth and their composition provides useful indicators for revegetation strategies. In the region surrounding the reservoir, remnant natural broad-leaved evergreen forests are most effective in sequestering carbon, and within the drawdown zone, carbon is mostly stored below ground. There is strong interest in the potential of aquatic plants for removal of pollutants, notably N and P, from the reservoir water by means of floating beds. Other examples of applying ecodesign and ecological engineering strategies for restoration and management of rivers and lakes are also given. Scientific studies have provided valuable advice for ecofriendly utilization of the reservoir drawdown zone and further studies of the evolving condition of the reservoir can be expected to pay additional practical dividends.
Show more [+] Less [-]