Refine search
Results 1571-1580 of 1,953
Evidence of population genetic effects in Peromyscus melanophrys chronically exposed to mine tailings in Morelos, Mexico
2013
Mussali-Galante, Patricia | Tovar-Sánchez, Efraín | Valverde, Mahara | Valencia-Cuevas, Leticia | Rojas, E.
Effects of environmental chemical pollution can be observed at all levels of biological organization. At the population level, genetic structure and diversity may be affected by exposure to metal contamination. This study was conducted in Huautla, Morelos, Mexico in a mining district where the main contaminants are lead and arsenic. Peromyscus melanophrys is a small mammal species that inhabits Huautla mine tailings and has been considered as a sentinel species. Metal bioaccumulation levels were examined by inductively coupled plasma mass spectrometry and genetic analyses were performed using eight microsatellite loci in 100 P. melanophrys individuals from 3 mine tailings and 2 control sites. The effect of metal bioaccumulation levels on genetic parameters (population and individual genetic diversity, genetic structure) was analyzed. We found a tissue concentration gradient for each metal and for the bioaccumulation index. The highest values of genetic differentiation (Fst and Rst) and the lowest number of migrants per generation (Nm) were registered among the exposed populations. Genetic distance analyses showed that the most polluted population was the most genetically distant among the five populations examined. Moreover, a negative and significant relationship was detected between genetic diversity (expected heterozygosity and internal relatedness) and each metal concentration and for the bioaccumulation index in P. melanophrys. This study highlights that metal stress is a major factor affecting the distribution and genetic diversity levels of P. melanophrys populations living inside mine tailings. We suggest the use of genetic population changes at micro-geographical scales as a population level biomarker.
Show more [+] Less [-]Atrazine biodegradation by Arthrobacter strain DAT1: effect of glucose supplementation and change of the soil microbial community
2013
Xie, Shuguang | Wan, Rui | Wang, Zhao | Wang, Qingfeng
The objective of this study was to investigate the impact of glucose supplementation on the soil microbiota inoculated with the atrazine-degrading Arthrobacter strain DAT1. Soil microcosms with different treatments were constructed for biodegradation tests. The impact of glucose supplementation on atrazine degradation capacity of the strain DAT1 and the strain’s survival and growth were assessed. The densities of the 16S rRNA gene and the atrazine-metabolic trzN gene were determined using quantitative PCR. The growth of the strain DAT1 and the bacterial community structure were characterized using terminal restriction fragment length polymorphism. Glucose supplementation could affect atrazine degradation by the strain DAT1 and the strain’s trzN gene density and growth. The density of the16S rRNA gene decreased during the incubation period. Glucose supplementation could alter the bacterial community structure during the bioaugmentation process. Glucose supplementation could promote the growth of the autochthonous soil degraders that harbored novel functional genes transforming atrazine. Further study will be necessary in order to elucidate the impact of exogenous carbon on autochthonous and inoculated degraders. This study could add some new insights on atrazine bioremediation.
Show more [+] Less [-]Influence of algal bloom degradation on nutrient release at the sediment–water interface in Lake Taihu, China
2013
Zhu, Mengyuan | Zhu, Guangwei | Zhao, Linlin | Yao, Xin | Zhang, Yunlin | Gao, Guang | Qin, Boqiang
Algal bloom could drastically influence the nutrient cycling in lakes. To understand how the internal nutrient release responds to algal bloom decay, water and sediment columns were sampled at 22 sites from four distinct regions of China’s eutrophic Lake Taihu and incubated in the laboratory to examine the influence of massive algal bloom decay on nutrient release from sediment. The column experiment involved three treatments: (1) water and sediment (WS); (2) water and algal bloom (WA); and (3) water, sediment, and algal bloom (WSA). Concentrations of dissolved oxygen (DO), total nitrogen (TN), total phosphorus (TP), ammonium (NH ₄ ⁺ -N), and orthophosphate (PO ₄ ³⁻ -P) were recorded during incubation. The decay of algal material caused a more rapid decrease in DO than in the algae-free controls and led to significant increases in NH ₄ ⁺ -N and PO ₄ ³⁻ -P in the water. The presence of algae during the incubation had a regionally variable effect on sediment nutrient profiles. In the absence of decaying algae (treatment WS), sediment nutrient concentrations decreased during the incubation. In the presence of blooms (WSA), sediments from the river mouth released P to the overlying water, while sediments from other regions absorbed surplus P from the water. This experiment showed that large-scale algal decay will dramatically affect nutrient cycling at the sediment–water interface and would potentially transfer the function of sediment as “container” or “supplier” in Taihu, although oxygen exchange with atmosphere in lake water was stronger than in columns. The magnitude of the effect depends on the physical–chemical character of the sediments.
Show more [+] Less [-]Occurrences and potential risks of 16 fragrances in five German sewage treatment plants and their receiving waters
2013
Klaschka, Ursula | von der Ohe, Peter Carsten | Bschorer, Anne | Krezmer, Sonja | Sengl, Manfred | Letzel, Marion
Fragrances are used in a wide array of everyday products and enter the aquatic environment via wastewater. While several musk compounds have been studied in detail, little is known about the occurrence and fate of other fragrances. We selected 16 fragrance compounds and scrutinized their presence in Bavarian sewage treatment plants (STP) influents and effluents and discussed their ecological risks for the receiving surface waters. Moreover, we followed their concentrations along the path in one STP by corresponding time-related water sampling and derived the respective elimination rates in the purification process. Six fragrance substances (OTNE, HHCB, lilial, acetyl cedrene, menthol, and, in some grab samples, also methyl-dihydrojasmonate) could be detected in the effluents of the investigated sewage treatment plants. The other fragrances under scrutiny were only found in the inflow and were eliminated in the purification process. Only OTNE and HHCB were found in the receiving surface waters of the STP in congruent concentrations, which exceeded the preliminary derived environmental thresholds by a factor of 1.15 and 1.12, respectively, indicating potential risks. OTNE was also detected in similar concentration ranges as HHCB in muscles and livers of fish from surface waters and from ponds that are supplied with purified wastewater. The findings show that some fragrance compounds undergo high elimination rates, whereas others—not only musks—are present in receiving surface water and biota and may present a risk to local aquatic biota. Hence, our results suggest that the fate and potential effects of fragrance compounds in the aquatic environment deserve more attention.
Show more [+] Less [-]Efficiency of lipopeptide biosurfactants in removal of petroleum hydrocarbons and heavy metals from contaminated soil
2013
Singh, Anil Kumar | Cameotra, Swaranjit Singh
This study describes the potential application of lipopeptide biosurfactants in removal of petroleum hydrocarbons and heavy metals from the soil samples collected from industrial dumping site. High concentrations of heavy metals (like iron, lead, nickel, cadmium, copper, cobalt and zinc) and petroleum hydrocarbons were present in the contaminated soil samples. Lipopeptide biosurfactant, consisting of surfactin and fengycin was obtained from Bacillus subtilis A21. Soil washing with biosurfactant solution removed significant amount of petroleum hydrocarbon (64.5 %) and metals namely cadmium (44.2 %), cobalt (35.4 %), lead (40.3 %), nickel (32.2 %), copper (26.2 %) and zinc (32.07 %). Parameters like surfactant concentration, temperature, agitation condition and pH of the washing solution influenced the pollutant removing ability of biosurfactant mixture. Biosurfactant exhibited substantial hydrocarbon solubility above its critical micelle concentration. During washing, 50 % of biosurfactant was sorbed to the soil particles decreasing effective concentration during washing process. Biosurfactant washed soil exhibited 100 % mustard seed germination contradictory to water washed soil where no germination was observed. The results indicate that the soil washing with mixture of lipopeptide biosurfactants at concentrations above its critical micelle concentration can be an efficient and environment friendly approach for removing pollutants (petroleum hydrocarbon and heavy metals) from contaminated soil.
Show more [+] Less [-]Misuse of null hypothesis significance testing: would estimation of positive and negative predictive values improve certainty of chemical risk assessment?
2013
Bundschuh, Mirco | Newman, Michael C. | Zubrod, Jochen P. | Seitz, Frank | Rosenfeldt, Ricki R. | Schulz, Ralf
Although generally misunderstood, the p value is the probability of the test results or more extreme results given H₀ is true: it is not the probability of H₀ being true given the results. To obtain directly useful insight about H₀, the positive predictive value (PPV) and the negative predictive value (NPV) may be useful extensions of null hypothesis significance testing (NHST). They provide information about the probability of statistically significant and non-significant test outcomes being true based on an a priori defined biologically meaningful effect size. The present study explores the utility of PPV and NPV in an ecotoxicological context by using the frequently applied Daphnia magna reproduction test (OECD guideline 211) and the chemical stressor lindane as a model system. The results indicate that especially the NPV deviates meaningfully between a test design strictly following the guideline and an experimental procedure controlling for α and β at the level of 0.05. Consequently, PPV and NPV may be useful supplements to NHST that inform the researcher about the level of confidence warranted by both statistically significant and non-significant test results. This approach also reinforces the value of considering α, β, and a biologically meaningful effect size a priori.
Show more [+] Less [-]Alkylphenolic compounds and bisphenol A contamination within a heavily urbanized area: case study of Paris
2013
Cladière, Mathieu | Gasperi, Johnny | Lorgeoux, Catherine | Bonhomme, Céline | Rocher, Vincent | Tassin, Bruno
This study evaluates the influence of a heavily urbanized area (Paris Metropolitan area), on receiving water contamination by both bisphenol A (BPA) and alkylphenol ethoxylate (APE) biodegradation product. The study began by investigating concentrations within urban sources. In addition to the more commonly studied wastewater treatment plant effluent, wet weather urban sources (including combined sewer overflows, urban runoff, and total atmospheric fallout) were considered. The initial results highlight a significant contamination of all urban sources (from a few nanograms per liter in atmospheric fallout to several micrograms per liter in the other sources) with clearly distinguishable distribution patterns. Secondly, concentration changes along the Seine River from upstream of the Paris Metropolitan area to downstream were investigated. While the concentrations of BPA and nonylphenoxy acetic acid (NP₁EC) increase substantially due to urban sources, the 4-nonylphenol concentrations remain homogeneous along the Seine. These results suggest a broad dissemination of 4-nonylphenol at the scale of the Seine River basin. Moreover, the relationship between pollutant concentrations and Seine River flow was assessed both upstream and downstream of the Paris conurbation. Consequently, a sharp decrease in dissolved NP₁EC concentrations relative to Seine River flow underscores the influence of single-point urban pollution on Seine River contamination. Conversely, dissolved 4-nonylphenol concentrations serve to reinforce the hypothesis of its widespread presence at the Seine River basin scale.
Show more [+] Less [-]Accelerated photo-transformation of 2,2′,4,4′,5,5′-hexachlorobiphenyl (PCB 153) in water by dissolved organic matter
2013
Chen, Lei | Shen, Chaofeng | Chang, Min-min | Tang, Xianjin | Chen, Yingxu
The ubiquitous dissolved organic matter (DOM) has an important influence on transformation of organic contaminants through the production of reactive substances, such as •OH, ¹O₂, and ³DOM*. The photolysis of a higher chlorinated polychlorinated biphenyl (PCB) congener (2,2′,4,4′,5,5′-hexachlorobiphenyl, PCB 153) under simulated sunlight in presence of humic acid (HA) was investigated. Degradation of PCB 153 was accelerated significantly by the addition of HA, with a rate constant of 0.0214, 0.0413, and 0.0358 h⁻¹ in the initial 18 h of irradiation in presence of 1, 5, and 20 mg/L HA, respectively. The main photodegradation products analyzed by gas chromatography mass spectrometry were 4-hydroxy-2,2′,4′,5,5′-pentaCB and 2,4,5-trichlorobenzoic acid. Main reactive species involved were determined by the electron spin-resonance spectroscopy, including ¹O₂ and •OH. Special scavengers were added to elucidate the photolysis mechanisms. By using the specific scavengers, it turned out that •OH accounted for 29.3 % of the degradation, and the intra-DOM reactive species (¹O₂, •OH, and ³DOM*) accounted for 59.6 % of the degradation. Photo-transformation sensitized by DOM, which involves both aqueous and intra-DOM reactions of PCBs with reactive species, may be one of the most important mechanisms for natural attenuation of PCBs.
Show more [+] Less [-]Reduction of bioavailability and leachability of heavy metals during vermicomposting of water hyacinth
2013
Singh, Jiwan | Kalamdhad, Ajay S.
Vermicomposting of water hyacinth is a good alternative for the treatment of water hyacinth (Eichhornia crassipes) and subsequentially, beneficial for agriculture purposes. The bioavailability and leachability of heavy metals (Zn, Cu, Mn, Fe, Ni, Pb, Cd, and Cr) were evaluated during vermicomposting of E. crassipes employing Eisenia fetida earthworm. Five different proportions (trials 1, 2, 3, 4, and 5) of cattle manure, water hyacinth, and sawdust were prepared for the vermicomposting process. Results show that very poor biomass growth of earthworms was observed in the highest proportion of water hyacinth (trial 1). The water soluble, diethylenetriaminepentaacetic acid (DTPA) extractable, and leachable heavy metals concentration (percentage of total heavy metals) were reduced significantly in all trials except trial 1. The total concentration of some metals was low but its water soluble and DTPA extractable fractions were similar or more than other metals which were present in higher concentration. This study revealed that the toxicity of metals depends on bioavailable fraction rather than total metal concentration. Bioavailable fraction of metals may be toxic for plants and soil microorganisms. The vermicomposting of water hyacinth by E. fetida was very effective for reduction of bioavailability and leachability of selected heavy metals. Leachability test confirmed that prepared vermicompost is not hazardous for soil, plants, and human health. The feasibility of earthworms to mitigate the metal toxicity and to enhance the nutrient profile in water hyacinth vermicompost might be useful in sustainable land renovation practices at low-input basis.
Show more [+] Less [-]Levels, compositions, and inventory of polybrominated diphenyl ethers in sewage sludge of Guangdong Province, South China
2013
Ran, Yong | Yang, Juan | Liu, Yejun | Zeng, Xianying | Gui, Hongyan | Zeng, E. Y. (Eddy Y.)
Polybrominated diphenyl ethers (PBDEs) were measured in sewage sludge samples collected from major wastewater treatment plants in Guangdong Province, South China. Concentrations of ∑39PBDE (all 39 compounds including tri- to hepta- PBDE congeners except for BDE-209) ranged from 3.6 to 428 ng/g dw with a mean value of 67.4 ng/g dw and a median value of 25.9 ng/g dw, and those of BDE-209 ranged from 9.9 to 5,010 ng/g dw (mean 1,024 ng/g dw and median 824 ng/g dw). The PBDE mixtures detected were mainly comprised of penta-, octa-, and deca-BDEs, with deca-BDE as the dominant constituent. The most abundant congeners, excluding BDE-209, were BDE-47, BDE-99, and BDE-183. Good correlations were found among the concentrations of BDE-47, BDE-99, BDE-100, BDE-138, and BDE-154 (r > 0.8). However, poor correlations were found between the concentrations of BDE-209 and all other congeners (r < 0.3). This fact suggests that most tri- to hepta-BDEs detected did not originate from decomposition of deca-BDE. The estimated annual emission of ∑allPBDEs, ∑39PBDEs, penta-BDE, octa-BDE, and deca-BDE to the Pearl River Delta environment (PRD), based on the sludge samples analyzed, amounts to 232, 20.2, 5.5, 1.7, and 212 kg per year, implicating sewage sludge as a significant source of PBDEs to the PRD environment.
Show more [+] Less [-]