Refine search
Results 1571-1580 of 3,207
Element concentrations in urban grass cuttings from roadside verges in the face of energy recovery Full text
2015
Piepenschneider, Meike | De Moor, Sofie | Hensgen, Frank | Meers, Erik | Wachendorf, Michael
Grass from municipal roadside verges is a potential yet largely unused resource for bioenergy recovery, which is mainly due to its unknown elemental composition. Therefore, we measured the concentration of 16 elements (Ca, K, Mg, N, Na, P, S, Al, Cd, Cl, Cr, Cu, Mn, Pb, Si and Zn) in a material from the city of Kassel harvested in different management intensities. The element concentrations were mainly close to reference values of agricultural or nature conservation grassland and usually within the range of literature data. Concentrations of most elements, including heavy metals, were below limiting values. Only N and Cl concentrations in the raw material exceeded the limiting values for combustion, but washing and dewatering of the biomass with the “integrated generation of solid fuel and biogas from biomass” technique resulted in concentrations in the press cake well below the limiting values. Considering the element concentrations of grass from urban roadside verges, utilisation for energy recovery may be possible, provided an appropriate technology is applied.
Show more [+] Less [-]Spatial and Temporal Migration of a Landfill Leachate Plume in Alluvium Full text
2015
Masoner, Jason R. | Cozzarelli, Isabelle M.
Leachate from unlined or leaky landfills can create groundwater contaminant plumes that last decades to centuries. Understanding the dynamics of leachate movement in space and time is essential for monitoring, planning and management, and assessment of risk to groundwater and surface-water resources. Over a 23.4-year period (1986–2010), the spatial extent of the Norman Landfill leachate plume increased at a rate of 7800 m²/year and expanded by 878 %, from an area of 20,800 m²in 1986 to 203,400 m²in 2010. A linear plume velocity of 40.2 m/year was calculated that compared favorably to a groundwater-seepage velocity of 55.2 m/year. Plume-scale hydraulic conductivity values representative of actual hydrogeological conditions in the alluvium ranged from 7.0 × 10⁻⁵to 7.5 × 10⁻⁴ m/s, with a median of 2.0 × 10⁻⁴ m/s. Analyses of field-measured and calculated plume-scale hydraulic conductivity distributions indicate that the upper percentiles of field-measured values should be considered to assess rates of plume-scale migration, spreading, and biodegradation. A pattern of increasing Cl⁻concentrations during dry periods and decreasing Cl⁻concentrations during wet periods was observed in groundwater beneath the landfill. The opposite occurred in groundwater downgradient from the landfill; that is, Cl⁻concentrations in groundwater downgradient from the landfill decreased during dry periods and increased during wet periods. This pattern of changing Cl⁻concentrations in response to wet and dry periods indicates that the landfill retains or absorbs leachate during dry periods and produces lower concentrated leachate downgradient. During wet periods, the landfill receives more recharge which dilutes leachate in the landfill but increases leachate migration from the landfill and produces a more concentrated contaminant plume. This approach of quantifying plume expansion, migration, and concentration during variable hydrologic conditions provides increased understanding of plume behavior and migration potential and may be applied at less monitored landfill sites to evaluate potential risks of contamination to downgradient receptors.
Show more [+] Less [-]Effects of Nano-maghemite on Trace Element Accumulation and Drought Response of Helianthus annuus L. in a Contaminated Mine Soil Full text
2015
Martínez-Fernández, Domingo | Vítková, Martina | Bernal, M Pilar | Komárek, Michael
Although recent studies show that the iron oxides do not enter or accumulate in plants, they may preclude the transport of water and nutrients in the plants through/as a consequence of their aggregation on the surface of the roots. The feasibility of using iron oxide nanoparticles to modify the availability of trace elements (TEs) to Helianthus annuus in the soil as well as their interference with the plant response during an imposed water deficiency stress were studied in a pot experiment. Plants were grown in a compost pre-amended contaminated soil with and without nano-maghemite (NM) and later exposed to drought. The nano-amendment promoted the growth of H. annuus (higher (25 %) dry weight than in the same soil without NM), mainly due to the insolubilisation of pore water Zn in the soil and the consequent reduction of its availability to the plants. During the water stress, NM did not cause an increase in the accumulation of proline or total amino acids in the plants, which are normally used as drought stress indicators, compared to the control plants without NM. In conclusion, NM could be useful soil amendments during phytoremediation procedures, since it can immobilise TEs in the soil without disrupting the plant water balance.
Show more [+] Less [-]Bacterial Inactivation by Ultrasonic Waves: Role of Ionic Strength, Humic Acid, and Temperature Full text
2015
Hwang, Gukhwa | Han, Yosep | Choi, Siyoung Q. | Cho, Sangho | Kim, Hyŏn-jŏng
The effects of ultrasonic wave irradiation on bacterial inactivation were investigated as functions of the ionic strength (IS), humic acid, and temperature. Escherichia coli (E. coli) D21g was selected as a model bacterium to better catch the effect of three parameters on the cell inactivation behavior. The Suwannee River humic acid (SRHA) was chosen as a representative humic acid, and the concentration for ultrasonic tests was kept to 10 ppm. The frequency of ultrasonic wave employed was 20 kHz, and the inactivation efficiency at two exposure times (5 and 10 min) was compared. The removal efficiency of E. coli D21g was confirmed to be 100 % at 10 min in all conditions except the 10-min temperature-controlled condition. The removal efficiency with the high IS was greater than that with the low IS, by 26 %, confirming an increase in the bacterial inactivation level with increasing IS. The bacterial removal efficiency with SRHA (96.6 %) was much greater than that without SRHA (69.6 %). The removal efficiency in the temperature-controlled condition (at a relatively low temperature) was significantly lower than that in the uncontrolled condition. Furthermore, the trend obtained using two other types of bacteria with more complex surface structure was consistent with that using the E. coli D21g cells.
Show more [+] Less [-]Analysis of Trace Elements in Groundwater Using ICP-OES and TXRF Techniques and Its Compliance with Brazilian Protection Standards Full text
2015
Espinoza-Quiñones, Fernando R. | Módenes, Aparecido N. | de Pauli, Aline Roberta | Palácio, Soraya M.
In this work, an assessment of groundwater quality and its compliance with Brazilian environmental protection standards was carried out. Ground waters from the Serra Geral aquifer are currently used for human consumption at the western region of the Brazilian state of Paraná. Ground water samples from 10 wells covering the entire Toledo municipality rural region were collected and analysed by two highly accurate and sensitive spectrometric techniques: inductively coupled plasma–optical emission spectrometry (ICP-OES) and total reflection X-ray spectrometry (TXRF). Among all detected elements, 18 elements (As, Ba, Br, Ca, Pb, Cl, Co, Cu, Cr, Fe, P, S, Mn, Ni, K, Ti, V and Zn) were measured by the TXRF technique while three elements (B, Mg and Na) were measured by ICP-OES. Trace element concentration levels were then compared with Brazilian environmental legislation (BEL). From the results obtained, concentrations of chromium, iron, arsenic, selenium, manganese and barium were detectable in some wells at slightly above the maximum limits allowed by the BEL.
Show more [+] Less [-]Efficiency of Microfiltration Systems for the Removal of Bacterial and Viral Contaminants from Surface and Rainwater Full text
2015
Dobrowsky, P. H. | Lombard, M. | Cloete, W. J. | Saayman, M. | Cloete, T. E. | Carstens, M. | Khan, S. | Khan, W.
The aim of this study was to evaluate the efficiency of a passive point-of-use treatment system, namely, a polyvinyl (alcohol) (PVA) nanofiber membrane/activated carbon column, for the treatment of harvested rainwater. The efficiency of SMI-Q10 [quaternized poly (styrene-co-maleimide)] nanofiber membrane disks placed in a filtration assembly for the treatment of surface water (Plankenburg River, Western Cape, South Africa) and harvested rainwater was also assessed. Two rainwater harvesting tanks were installed at the Welgevallen Experimental farm, Stellenbosch, South Africa, with the filtration system intermittently attached to the tanks for collection of rainwater samples throughout the study period. Parameters used to monitor the filtration systems included heterotrophic bacteria, Escherichia coli, and total coliform enumeration and the presence/absence of adenovirus. When compared to drinking water guidelines, the results indicated that 3 L of potable water could be produced by the synthesized PVA nanofiber membrane/activated carbon column. However, PCR assays indicated that adenovirus and numerous bacteria such as Klebsiella spp., Legionella spp., Pseudomonas spp., and Yersinia spp. were not effectively removed by the filtration system utilized. Additionally, the SMI-Q10 nanofiber membrane disks did not remove viruses from the river or tank water samples as bovine adenovirus 3 strain, simian adenovirus, and human adenovirus A strain were detected in all water samples analyzed. Thus, while the microfiltration system was efficient in reducing the level of indicator organisms to within drinking water standards, further optimization of the electrospun filtration membranes is required as molecular analysis revealed that numerous opportunistic bacterial pathogens and viruses persisted after filtration.
Show more [+] Less [-]Salinization and Yield Potential of a Salt-Laden Californian Soil: an In Situ Geophysical Analysis Full text
2015
Cassel, Florence | Goorahoo, Dave | Sharmasarkar, Shankar
Salinization is a global problem, including in California, USA, where over two million hectares of irrigated lands have deteriorated due to salt loading. Because of freshwater shortage, some farmlands are also irrigated with agricultural drainage water, which further exacerbates the salinization process. With the objectives of rapidly quantifying spatial and temporal progression of salinization and identifying yield potential for a high-value crop, we conducted 2-year salinity surveys in a salt-affected farm in California by utilizing a dual dipole electromagnetic induction technology (EM38). The EM-predicted conductivity (ECₑ) was consistent with the ground-truth soil data ECₛ and increased with depth. About 50 and 25 % of the ECₑ data in moderately (A) and severely (B) affected salinity zones surpassed 500 and 1000 mS m⁻¹ levels, respectively. In the northern part of B, up to 70 % samples remained within 500–1000 mS m⁻¹ range. There was eastbound salt loading in the northern and southern parts of A. Rhizosphere salinity showed spatial dependence up to 500 m lateral distance. The shifts in salinity could be due to dispersion and leaching of solutes. High crop yield reduction was estimated in the southwestern and northeastern parts of the field that had typically elevated ECₑ. Around 43 % surveyed area was conducive to attaining 80 % of full yield potential, and the central part of the field was determined to be most suitable for crop growth. Coupling of EM results with production values indicated that under elevated saline condition, it would be feasible to grow a high-value tomato crop.
Show more [+] Less [-]Effects of Leaf Area and Transpiration Rate on Accumulation and Compartmentalization of Cadmium in Impatiens walleriana Full text
2015
Lai, Hung-Yu
The efficiency of phytoextraction is limited because of the low growth exhibited by plants under the stress of heavy metals. Impatiens (Impatiens walleriana) cuttings were grown in soils artificially contaminated with cadmium (Cd) and modified with chemical fertilizer to study the relationship among the leaf area, transpiration rate, and Cd accumulation. The subcellular distribution of Cd in various impatiens organs was also measured. Experimental results showed that there were positive, linear relationships between the leaf area and the transpiration rate. A similar relationship was found between the transpiration rate and the Cd accumulation in the shoots. Suitable management practices can be conducted to increase the transpiration rate and thus the plant’s phytoextraction efficiency. In the roots and leaves, Cd was mainly compartmentalized in the soluble fraction and the cell wall fraction, respectively. The varied subcellular distribution of Cd in the different organs was responsible for the high accumulation capacity.
Show more [+] Less [-]Fluoroquinolone Antibacterial Agent Contaminants in Soil/Groundwater: A Literature Review of Sources, Fate, and Occurrence Full text
2015
Chen, Guoli | Li, Miao | Liu, Xiang
Fluoroquinolone antibacterial agents (FQs) are the most commonly detected antibiotics in soil/groundwater which cause chronic effects on human beings as well as aquatic ecosystems. The current situation of the regulation, occurrence, fate, and sources of FQs in soil/groundwater was systematically analyzed in this paper. And then, the important factors affecting milligram per liter concentration of FQs sorption in soil, such as pH, cation exchange, clay minerals, organic content, surface complexation, and microbial degradation or transformation, were summarized. Actually, nanogram-microgram per liter concentration is detected frequently in soil/groundwater by far. Due to the extensive application of FQs and its relatively stable physicochemical characteristics, the higher concentration in soil/groundwater would appear in the coming decades which may exert a threat to freshwater and human beings. To the knowledge of the authors, no full-scale fate, occurrence, spatial, and temporal variations of FQs in soil/groundwater have been reported in the scientific literature. Therefore, it is recommended that more comprehensive studies are required to fill knowledge gaps in low-concentration transport, fate and occurrence, spatial, and temporal variations of FQs in soil/groundwater and their potential risk assessment to human and ecosystem.
Show more [+] Less [-]Long-Term Changes in the Water Chemistry of Arctic Lakes as a Response to Reduction of Air Pollution: Case Study in the Kola, Russia Full text
2015
Moiseenko, Tatiana Ivanovna | Dinu, Marina Ivanovna | Bazova, Maria Mihailovna | de Wit, Heleen A.
Sixty years of air pollution from two Cu-Ni smelting plants (“Pechenganikel” and “Severonikel”) in the Kola region in northwest Russia have posed a severe threat for water quality, specifically acidification, in subarctic lakes. In the last two decades, emissions of SO2, Cu and Ni from the smelters have declined with 33 %, 40 % and 36 %, respectively. The 75 lakes in Kola Peninsula were sampled with 5-year intervals for the period 1990 to 2010. In addition, were analysed for major anions and cations, DOC and heavy metals. The lakes were grouped according to geology and distance to emission sources into 6 subregions. The most acid-sensitive lakes are located on granites, quartz sands or in highlands. Since 1990, ANС has increased, which is connected to the reduction of the contents strong acids in water (sulphate, chloride) while base cations concentrations have been almost unchanged. Despite the reduction of sulphate, concentrations of alkalinity have not increased in lake water. We have found an increase in concentration of dissolved organic carbon (DOC) and nutrients in Kola lake waters over a 20-year period. We suggest this phenomenon can be explained by two mechanisms: a reduction in deposition of strong acids and warming climate. Concentrations of Ni and Cu have decreased 5-10-fold over the last 20 years. We conclude that reduced emissions from Cu-Ni smelting plants has led to improved water quality in the Kola region.
Show more [+] Less [-]