Refine search
Results 1611-1620 of 2,498
Phragmites sp. physiological changes in a constructed wetland treating an effluent contaminated with a diazo dye (DR81)
2014
Ferreira, Renata Alexandra | Duarte, Joana Gouveia | Vergine, Pompilio | Antunes, Carlos D. | Freire, Filipe | Martins-Dias, Susete
The role of Phragmites sp. in phytoremediation of wastewaters containing azo dyes is still, in many ways, at its initial stage of investigation. This plant response to the long-term exposure to a highly conjugated di-azo dye (Direct Red 81, DR81) was assessed using a vertical flow constructed wetland, at pilot scale. A reed bed fed with water was used as control. Changes in photosynthetic pigment content in response to the plant contact with synthetic DR81 effluent highlight Phragmites plasticity. Phragmites leaf enzymatic system responded rapidly to the stress imposed; in general, within 1 day, the up-regulation of foliar reactive oxygen species-scavenging enzymes (especially superoxide dismutase, ascorbate peroxidase (APX), glutathione peroxidase (GPX) and peroxidase) was noticed as plants entered in contact with synthetic DR81 effluent. This prompt activation decreased the endogenous levels of H₂O₂and the malonyldialdehyde content beyond reference values. Glutathione S-transferase (GST) activity intensification was not enough to cope with stress imposed by DR81. GPX activity was pivotal for the detoxification pathways after a 24-h exposure. Carotenoid pool was depleted during this shock. After the imposed DR81 stress, plants were harvested. In the next vegetative cycle, Phragmites had already recovered from the chemical stress. Principal component analysis (PCA) highlights the role of GPX, GST, APX, and carotenoids along catalase (CAT) in the detoxification process.
Show more [+] Less [-]EROD activity and antioxidant defenses of sea bass (Dicentrarchus labrax) after an in vivo chronic hydrocarbon pollution followed by a post-exposure period
2014
Danion, Morgane | Floch, Stéphane Le | Lamour, François | Quentel, Claire
Chronic concentrations of polycyclic aromatic hydrocarbons (PAHs) have been commonly detected in international estuaries ecosystems. Reliable indicators still need to be found in order to properly assess the impact of PAHs in fish. After an in vivo chronic exposure to hydrocarbons, the enzymatic activity of 7-ethoxyresorufin O-deethylase (EROD) and the antioxidant defense system were assessed in sea bass, Dicentrarchus labrax. A total of 45 fish were exposed to the water-soluble fraction of Arabian crude oil, similar to a complex pollution by hydrocarbons chronically observed in situ, while 45 other control fish sustained the same experimental conditions in clean seawater. Fish samples were made after a 21-day exposure period and after a 15-day recovery period in clean fresh water. Throughout the experiment, liver EROD activity was significantly higher in contaminated fish than in control fish. In addition, nonenzymatic (total glutathione) and enzymatic (GPx, SOD, and CAT) antioxidant defense parameters measured in liver were not significantly different in fish. Furthermore, in gills, glutathione content had significantly increased while SOD activity had significantly decreased in contaminated fish compared to controls. On the other hand, CAT and GPx activities were not affected. Chronic exposure to PAHs disturbing the first step (SOD) and inhibiting the second step (GPx and CAT) could induce oxidative stress in tissues by the formation of oxygen radicals. After the postexposure period, there was no significant difference between control and contaminated fish in any of the antioxidant defense parameters measured in gills, attesting to the reversibility of the effects.
Show more [+] Less [-]A diagnostic evaluation of modeled mercury wet depositions in Europe using atmospheric speciated high-resolution observations
2014
Bieser, J. | De Simone, F. | Gencarelli, C. | Geyer, B. | Hedgecock, I. | Matthias, V. | Travnikov, O. | Weigelt, A.
This study is part of the Global Mercury Observation System (GMOS), a European FP7 project dedicated to the improvement and validation of mercury models to assist in establishing a global monitoring network and to support political decisions. One key question about the global mercury cycle is the efficiency of its removal out of the atmosphere into other environmental compartments. So far, the evaluation of modeled wet deposition of mercury was difficult because of a lack of long-term measurements of oxidized and elemental mercury. The oxidized mercury species gaseous oxidized mercury (GOM) and particle-bound mercury (PBM) which are found in the atmosphere in typical concentrations of a few to a few tens pg/m³are the relevant components for the wet deposition of mercury. In this study, the first European long-term dataset of speciated mercury taken at Waldhof/Germany was used to evaluate deposition fields modeled with the chemistry transport model (CTM) Community Multiscale Air Quality (CMAQ) and to analyze the influence of the governing parameters. The influence of the parameters precipitation and atmospheric concentration was evaluated using different input datasets for a variety of CMAQ simulations for the year 2009. It was found that on the basis of daily and weekly measurement data, the bias of modeled depositions could be explained by the bias of precipitation fields and atmospheric concentrations of GOM and PBM. A correction of the modeled wet deposition using observed daily precipitation increased the correlation, on average, from 0.17 to 0.78. An additional correction based on the daily average GOM and PBM concentration lead to a 50 % decrease of the model error for all CMAQ scenarios. Monthly deposition measurements were found to have a too low temporal resolution to adequately analyze model deficiencies in wet deposition processes due to the nonlinear nature of the scavenging process. Moreover, the general overestimation of atmospheric GOM by the CTM in combination with an underestimation of low precipitation events in the meteorological models lead to a good agreement of total annual wet deposition besides the large error in weekly deposition estimates. Moreover, it was found that the current speciation profiles for GOM emissions are the main factor for the overestimation of atmospheric GOM concentrations and might need to be revised in the future. The assumption of zero emissions of GOM lead to an improvement of the mean normalized bias for three-hourly observations of atmospheric GOM from 9.7 to 0.5, Furthermore, the diurnal correlation between model and observation increased from 0.01 to 0.64. This is a strong indicator that GOM is not directly emitted from primary sources but is mainly created by oxidation of GEM.
Show more [+] Less [-]Spatiotemporal distribution and short-term trends of particulate matter concentration over China, 2006–2010
2014
Yao, Ling | Lu, Ning
Air quality problems caused by atmospheric particulate have drawn broad public concern in the global scope. In the paper, the spatiotemporal distributions of fine particle (PM2.5) and inhalable particle (PM10) concentrations estimated with the artificial neural network (ANN) over China during 2006 to 2010 have been discussed. Most high PM10 concentration appears in Xinjiang, Qinghai, Gansu, Ningxia, Hubei, and parts of Inner Mongolia. The distribution of PM2.5 concentration is consistent with China’s three gradient terrains. The seasonal variations of PM2.5 and PM10 concentrations both indicate that they are higher in north China in spring and winter, lowest in summer. In autumn, most provinces in south China appear high value. In particular, high PM2.5 concentration appears in the southeast coastal cities while high PM10 concentration prefers the central regions in south China. On this basis, seasonal Mann–Kendall test method is utilized to analyze the short-term trends. The results also show significant changes of PM2.5 and PM10 concentrations of China in the past 5 years, and most provinces present the tendency of reduction (3–5 μg/m³for PM2.5 and 10–20 μg/m³for PM10 per year) while a fraction of provinces appear the increasing trend of 8–16 μg/m³(PM2.5) and 16–30 μg/m³(PM10). Simultaneously, PM2.5 population exposure is discussed with the combination of population density-gridded data. Municipalities get much higher exposure level than other provinces. Shanghai suffers the highest population exposure to PM2.5, followed by Beijing and then Tianjin, Jiangsu province. Most provincial capitals, such as Guangzhou, Nanjing, Chengdu, and Wuhan, face much higher exposure level than other regions of their province. Moreover, the PM2.5 exposure situation is more serious in southeast than northwest regions for Beijing-Tianjin-Hebei region. Also, per capita PM2.5 concentration and population-weighted PM2.5 concentration are calculated. The former shows that the high-level regions distribute in Guangdong, Shanghai, and Tianjin, while the latter in Hebei, Chongqing, and Shandong provinces. Further studies may consider optimizing concentration estimation model and use it to discuss the effects of particulate matters on human health.
Show more [+] Less [-]Enhanced reduction of phenol content and toxicity in olive mill wastewaters by a newly isolated strain of Coriolopsis gallica
2014
Daâssi, Dalel | Belbahri, Lassaad | Vallat, Armelle | Woodward, Steve | Nasri, Moncef | Mechichi, Tahar
The search for novel microorganisms able to degrade olive mill wastewaters (OMW) and withstand the toxic effects of the initially high phenolic concentrations is of great scientific and industrial interest. In this work, the possibility of reducing the phenolic content of OMW using new isolates of fungal strains (Coriolopsis gallica, Bjerkandera adusta, Trametes versicolor, Trichoderma citrinoviride, Phanerochaete chrysosporium, Gloeophyllum trabeum, Trametes trogii, and Fusarium solani) was investigated. In vitro, all fungal isolates tested caused an outstanding decolorization of OMW. However, C. gallica gave the highest decolorization and dephenolization rates at 30 % v/v OMW dilution in water. Fungal growth in OMW medium was affected by several parameters including phenolic compound concentration, nitrogen source, and inoculum size. The optimal OMW medium for the removal of phenolics and color was with the OMW concentration (in percent)/[(NH₄)₂SO₄]/inoculum ratio of 30:6:3. Under these conditions, 90 and 85 % of the initial phenolic compounds and color were removed, respectively. High-pressure liquid chromatography analysis of extracts from treated and untreated OMW showed a clear and substantial reduction in phenolic compound concentrations. Phytotoxicity, assessed using radish (Raphanus sativus) seeds, indicated an increase in germination index of 23–92 % when a 30 % OMW concentration was treated with C. gallica in different dilutions (1/2, 1/4, and 1/8).
Show more [+] Less [-]Reduction of DNA mismatch repair protein expression in airway epithelial cells of premenopausal women chronically exposed to biomass smoke
2014
Mukherjee, Bidisha | Dutta, Anindita | Chowdhury, Saswati | Roychoudhury, Sanghita | Ray, Manas Ranjan
Biomass burning is a major source of indoor air pollution in rural India. This study examined whether chronic inhalation of biomass smoke causes change in the DNA mismatch repair (MMR) pathway in the airway cells. For this, airway cells exfoliated in sputum were collected from 72 premenopausal nonsmoking rural women (median age 34 years) who cooked with biomass (wood, dung, crop residues) and 68 control women who cooked with cleaner fuel liquefied petroleum gas (LPG) for the past 5 years or more. The levels of particulate matters with diameters less than 10 and 2.5 μm (PM₁₀and PM₂.₅) in indoor air were measured by real-time aerosol monitor. Benzene exposure was monitored by measuring trans,trans-muconic acid (t,t-MA) in urine by high-performance liquid chromatography with ultraviolet detector. Generation of reactive oxygen species (ROS) and level of superoxide dismutase (SOD) in airway cells were measured by flow cytometry and spectrophotometry, respectively. Immunocytochemical assay revealed lower percentage of airway epithelial cells expressing MMR proteins mutL homolog 1 (MLH1) and mutS homolog 2 (MSH2) in biomass-using women compared to LPG-using controls. Women who cooked with biomass had 6.7 times higher level of urinary t,t-MA, twofold increase in ROS generation, and 31 % depletion of SOD. Indoor air of biomass-using households had three times more particulate matters than that of controls. ROS, urinary t,t-MA, and particulate pollution in biomass-using kitchen had negative correlation, while SOD showed positive correlation with MSH2 and MLH1 expression. It appears that chronic exposure to biomass smoke reduces MMR response in airway epithelial cells, and oxidative stress plays an important role in the process.
Show more [+] Less [-]Risk assessment of inhalation exposure to polycyclic aromatic hydrocarbons in school children
2014
Jyethi, Darpa Saurav | Khillare, P. S. | Sarkar, Sayantan
Polycyclic aromatic hydrocarbons (PAHs) associated with the inhalable fraction of particulate matter were determined for 1 year (2009–2010) at a school site located in proximity of industrial and heavy traffic roads in Delhi, India. PM₁₀(aerodynamic diameter ≤10 μm) levels were ∼11.6 times the World Health Organization standard. Vehicular (59.5 %) and coal combustion (40.5 %) sources accounted for the high levels of PAHs (range 38.1–217.3 ng m⁻³) with four- and five-ring PAHs having ∼80 % contribution. Total PAHs were dominated by carcinogenic species (∼75 %) and B[a]P equivalent concentrations indicated highest exposure risks during winter. Extremely high daily inhalation exposure of PAHs was observed during winter (439.43 ng day⁻¹) followed by monsoon (232.59 ng day⁻¹) and summer (171.08 ng day⁻¹). Daily inhalation exposure of PAHs to school children during a day exhibited the trend school hours > commuting to school > resting period in all the seasons. Vehicular source contributions to daily PAH levels were significantly correlated (r = 0.94, p < 0.001) with the daily inhalation exposure level of school children. A conservative estimate of ∼11 excess cancer cases in children during childhood due to inhalation exposure of PAHs has been made for Delhi.
Show more [+] Less [-]Parallel detection of harmful algae using reverse transcription polymerase chain reaction labeling coupled with membrane-based DNA array
2014
Zhang, Chunyun | Chen, Guofu | Ma, Chaoshuai | Wang, Yuanyuan | Zhang, Baoyu | Wang, Guangce
Harmful algal blooms (HABs) are a global problem, which can cause economic loss to aquaculture industry's and pose a potential threat to human health. More attention must be made on the development of effective detection methods for the causative microalgae. The traditional microscopic examination has many disadvantages, such as low efficiency, inaccuracy, and requires specialized skill in identification and especially is incompetent for parallel analysis of several morphologically similar microalgae to species level at one time. This study aimed at exploring the feasibility of using membrane-based DNA array for parallel detection of several microalgae by selecting five microaglae, including Heterosigma akashiwo, Chaetoceros debilis, Skeletonema costatum, Prorocentrum donghaiense, and Nitzschia closterium as test species. Five species-specific (taxonomic) probes were designed from variable regions of the large subunit ribosomal DNA (LSU rDNA) by visualizing the alignment of LSU rDNA of related species. The specificity of the probes was confirmed by dot blot hybridization. The membrane-based DNA array was prepared by spotting the tailed taxonomic probes onto positively charged nylon membrane. Digoxigenin (Dig) labeling of target molecules was performed by multiple PCR/RT-PCR using RNA/DNA mixture of five microalgae as template. The Dig-labeled amplification products were hybridized with the membrane-based DNA array to produce visible hybridization signal indicating the presence of target algae. Detection sensitivity comparison showed that RT-PCR labeling (RPL) coupled with hybridization was tenfold more sensitive than DNA-PCR-labeling-coupled with hybridization. Finally, the effectiveness of RPL coupled with membrane-based DNA array was validated by testing with simulated and natural water samples, respectively. All of these results indicated that RPL coupled with membrane-based DNA array is specific, simple, and sensitive for parallel detection of microalgae which shows promise for monitoring natural samples in the future.
Show more [+] Less [-]Evaluation of HODE-15, FDE-15, CDE-15, and BDE-15 toxicity on adult and embryonic zebrafish (Danio rerio)
2014
Qin, Li | Liu, Fu | Liu, Hui | Wei, Zhongbo | Sun, Ping | Wang, Zunyao
Diphenyl ether and its derivatives are widely used in the industry of spices, dyes, agrochemicals, and pharmaceuticals. Following the previous study, we selected 4,4′-dihydroxydiphenyl ether, 4,4′-difluorodiphenyl ether, 4,4′-dichlorodiphenyl ether, and 4,4′-dibromodiphenyl ether as research objects. The LC₅₀(96 h) values for these compounds in adult zebrafish were determined with the acute test. Also, developmental toxicities of the four substances to zebrafish embryos were observed at 24, 48, 72, and 96 hpf. All the LC₅₀(96 h) values of these compounds were between 1 and 10 mg/L, suggesting that they all had moderate toxicity to adult zebrafish. The embryonic test demonstrated that with increasing doses, 4,4′-dihydroxydiphenyl ether decreased the hatching rate, while 4,4′-difluorodiphenyl ether, 4,4′-dichlorodiphenyl ether, and 4,4′-dibromodiphenyl ether delayed the hatching time but had little effect on final hatchability at 96 hpf. All of these compounds inhibited larval growth, especially 4,4′-dihydroxydiphenyl ether. Exposure to these chemicals induced embryo yolk sac and pericardial edema. Spine deformation was visible in hatched larvae after 96 hpf 4,4′-dihydroxydiphenyl ether exposure, while tail curvature was observed for the halogenated compounds. The overall results indicated that 4,4′-dihydroxydiphenyl ether, 4,4′-difluorodiphenyl ether, 4,4′-dichlorodiphenyl ether, and 4,4′-dibromodiphenyl ether all had significant toxicity on adult and embryonic zebrafish.
Show more [+] Less [-]Isolation and characterization of novel phorate-degrading bacterial species from agricultural soil
2014
Jariyal, Monu | Gupta, V. K. | Mandal, Kousik | Jindal, Vikas | Banta, Geetika | Singh, Balwinder
Based upon 16S rDNA sequence homology, 15 phorate-degrading bacteria isolated from sugarcane field soils by selective enrichment were identified to be different species of Bacillus, Pseudomonas, Brevibacterium, and Staphylococcus. Relative phorate degradation in a mineral salt medium containing phorate (50 μg ml⁻¹) as sole carbon source established that all the bacterial species could actively degrade more than 97 % phorate during 21 days. Three of these species viz. Bacillus aerophilus strain IMBL 4.1, Brevibacterium frigoritolerans strain IMBL 2.1, and Pseudomonas fulva strain IMBL 5.1 were found to be most active phorate metabolizers, degrading more than 96 % phorate during 2 days and 100 % phorate during 13 days. Qualitative analysis of phorate residues by gas liquid chromatography revealed complete metabolization of phorate without detectable accumulation of any known phorate metabolites. Phorate degradation by these bacterial species did not follow the first-order kinetics except the P. fulva strain IMBL 5.1 with half-life period (t½) ranging between 0.40 and 5.47 days.
Show more [+] Less [-]