Refine search
Results 1611-1620 of 6,558
Effect of sulfamethazine on surface characteristics of biochar colloids and its implications for transport in porous media Full text
2020
Yang, Wen | Feng, Tongtong | Flury, Markus | Li, Baoguo | Shang, Jianying
Antibiotics are contaminants of emerging concern due to their potential effect on antibiotic resistance and human health. Antibiotics tend to sorb strongly to organic materials, and biochar, a high efficient agent for adsorbing and immobilizing pollutants, can thus be used for remediation of antibiotic-contaminated soil and water. The effect of ionizable antibiotics on surface characteristics and transport of biochar colloids (BC) in the environment is poorly studied. Column experiments of BC were conducted in 1 mM NaCl solution under three pH (5, 7, and 10) conditions in the presence of sulfamethazine (SMT). Additionally, the adsorption of SMT by BC and the zeta potential of BC were also studied. The experimental results showed that SMT sorption to BC was enhanced at pH 5 and 7, but reduced at pH 10. SMT sorption reduced the surface charge of BC at pH 5 and 7 due to charge shielding, but increased surface charge at pH 10 due to adsorption of the negatively charged SMT species. The mobility of BC was inhibited by SMT under acidic or neutral conditions, while enhanced by SMT under alkaline conditions, which can be well explained by the change of electrostatic repulsion between BC and sand grains. These findings imply that pH conditions played a crucial role in deciding whether the transport of BC would be promoted by SMT or not. Biochar for antibiotics remediation will be more effective under acidic and neutral soil conditions, and the mobility of BC will be less than in alkaline soils.
Show more [+] Less [-]High carbohydrate diet partially protects Nile tilapia (Oreochromis niloticus) from oxytetracycline-induced side effects Full text
2020
Limbu, Samwel Mchele | Zhang, Han | Luo, Yuan | Chen, Li-Qiao | Zhang, Meiling | Du, Zhen-Yu
Antibiotics used in global aquaculture production cause various side effects, which impair fish health. However, the use of dietary composition such as carbohydrate, which is one of the dominant components in fish diets to attenuate the side effects induced by antibiotics, remains unclear. We determined the ability of high carbohydrate diet to protect Nile tilapia (Oreochromis niloticus) from oxytetracycline-induced side effects. Triplicate groups of thirty O. niloticus (9.50 ± 0.08 g) were fed on medium carbohydrate (MC; 335 g/kg) and high carbohydrate (HC; 455 g/kg) diets without and with 2.00 g/kg diet of oxytetracycline (80 mg/kg body weight/day) hereafter, MCO and HCO for 35 days. Thereafter, we assessed growth performance, hepatic nutrients composition and metabolism, microbiota abundance, immunity, oxidative and cellular stress, hepatotoxicity, lipid peroxidation and apoptosis. To understand the possible mechanism of carbohydrate protection on oxytetracycline, we assessed the binding effects and efficiencies of mixtures of medium and high starch with oxytetracycline as well as the MCO and HCO diets. The O. niloticus fed on the MCO and HCO diets had lower growth rate, nutrients utilization and survival rate than those fed on the MC and HC diets, respectively. Dietary HCO increased hepatosomatic index and hepatic protein content of O. niloticus than MCO diet. The O. niloticus fed on the HCO diet had lower mRNA expression of genes related to protein, glycogen and lipid metabolism compared to those fed on the MCO diet. Feeding O. niloticus on the HCO diet increased innate immunity and reduced pathogenic bacteria, pro-inflammation, hepatotoxicity, cellular stress and apoptosis than the MCO diet. The high starch with oxytetracycline and HCO diet had higher-oxytetracycline binding effects and efficiencies than the medium starch with oxytetracyline and MCO diet, respectively. Our study demonstrates that, high carbohydrate partially protects O. niloticus from oxytetracycline-induced side effects by binding the antibiotic. Incorporating high carbohydrate in diet formulation for omnivorous fish species alleviates some of the side effects caused by antibiotics.
Show more [+] Less [-]β-blockers in the environment: Distribution, transformation, and ecotoxicity Full text
2020
Yi, Ming | Sheng, Qi | Sui, Qian | Lu, Huijie
β-blockers are a class of medications widely used to treat cardiovascular disorders, including abnormal heart rhythms, high blood pressure, and angina pectoris. The prevalence of β-blockers has generated a widespread concern on their potential chronic toxicity on aquatic organisms, highlighting the necessity of comprehensive studies on their environmental distribution, fate, and toxicity. This review summarizes the up-to-date knowledge on the source, global distribution, analytical methods, transformation, and toxicity of β-blockers. Twelve β-blockers have been detected in various environmental matrices, displaying significant temporal and spatial variations. β-blockers can be reduced by 0–99% at wastewater treatment plants, where secondary processes contribute to the majority of removal. Advanced oxidation processes, e.g., photocatalysis and combined UV/persulfate can transform β-blockers more rapidly and completely than conventional wastewater treatment processes, but the transformation products could be more toxic than the parent compounds. Propranolol, especially its (S)-enantiomer, exhibits the highest toxicity among all β-blockers. Future research towards improved detection methods, more efficient and cost-effective removal techniques, and more accurate toxicity assessment is needed to prioritize β-blockers for environmental monitoring and control worldwide.
Show more [+] Less [-]Associations between renal functions and exposure of arsenic and polycyclic aromatic hydrocarbon in adults living near a petrochemical complex Full text
2020
Yuan, Tzu-Hsuen | Ke, Deng-Yuan | Wang, Joyce En-Hua | Chan, Chang-Chuan
The understanding for the impact of petrochemical pollutants exposure on renal functions is limited.Our study examined the associations between renal functions and pollutants exposure in adult residents living in the vicinity of a petrochemical industry.We recruited 2069 adult residents near a big petrochemical complex in Taiwan in 2009–2012, and they were categorized into high exposure (HE) and low exposure (LE) groups based on their address to source by 10 km radius. Study subjects were measured the urinary levels of arsenic, cadmium, mercury, thallium, and 1-hydroxypyrene (1-OHP). The estimated glomerular filtration rate (eGFR) was calculated using the Taiwanese Chronic Kidney Disease Epidemiology Collaboration equation, and the chronic kidney disease (CKD) prevalence and risks were defined according to KDIGO 2012 guidelines. Adjusted generalized linear and logistic regression models were applied to evaluate the associations between petrochemical exposure and renal functions.Subjects in the HE areas had significantly lower eGFR, higher CKD prevalence, and higher levels of urinary arsenic, cadmium, mercury, thallium and 1-OHP. The closer to complex and high exposure group of study subjects were significantly associated with the decrease in eGFR, higher ORs for CKD and high-intermediate risk of CKD. In addition, the study subjects who had two-fold urinary arsenic and 1-OHP levels were significantly with decreased 0.68 and 0.49 ml/min/1.73 m2 of eGFR, respectively.Residing closer and higher arsenic and polycyclic aromatic hydrocarbon exposure were associated with the renal impairment and risks of CKD among the residential population near the petrochemical industry.
Show more [+] Less [-]Rainbow trout (Oncorhynchus mykiss) chemosensory detection of and reactions to copper nanoparticles and copper ions Full text
2020
Razmara, Parastoo | Sharpe, Justin | Pyle, Gregory G.
Copper is known to interfere with fish olfaction. Although the chemosensory detection and olfactory toxicity of copper ions (Cu²⁺) has been heavily studied in fish, the olfactory-driven detection of copper nanoparticles (CuNPs)—a rapidly emerging contaminant to aquatic systems—remains largely unknown. This study aimed to investigate the olfactory response of rainbow trout to equitoxic concentrations of CuNPs or Cu²⁺ using electro-olfactography (EOG, a neurophysiological technique) and olfactory-mediated behavioural assay. In the first experiment, the concentration of contaminants known to impair olfaction by 20% over 24 h (EOG-based 24-h IC20s of 220 and 3.5 μg/L for CuNPs and Cu²⁺, respectively) were tested as olfactory stimuli using both neurophysiological and behavioural assays. In the second experiment, to determine whether the presence of CuNPs or Cu²⁺ can affect the ability of fish to perceive a social cue (taurocholic acid (TCA)), fish were acutely exposed to one form of Cu-contaminants (approximately 15 min). Following exposure, olfactory sensitivity was measured by EOG and olfactory-mediated behaviour within a choice maze was recorded in the presence of TCA. Results of neurophysiological and behavioural experiments demonstrate that rainbow trout can detect and avoid the IC20 of CuNPs. The IC20 of Cu²⁺ was below the olfactory detection threshold of rainbow trout, as such, fish did not avoid Cu²⁺. The high sensitivity of behavioural endpoints revealed a lack of aversion response to TCA in CuNP-exposed fish, despite this change not being present utilizing EOG. The reduced response to TCA during the brief exposure to CuNPs may be a result of either olfactory fatigue or blockage of olfactory sensory neurons (OSNs) by CuNPs. The observed behavioural interference caused by CuNP exposure may indicate that CuNPs have the ability to interfere with other behaviours potentially affecting fitness and survival. Our findings also revealed the differential response of OSNs to CuNPs and Cu²⁺.
Show more [+] Less [-]Spatial distribution and factors influencing the different forms of ammonium in sediments and pore water of the aquitard along the Tongshun River, China Full text
2020
Liu, Rui | Ma, Teng | Zhang, Dongtao | Lin, Chaohong | Chen, Juan
Nitrogen pollution of groundwater has created problems worldwide. Riparian zones form a connection hub for terrestrial and aquatic ecosystems. As a potential source of ammonium in groundwater, aquitards have an important effect on the environment of riparian zones. The spatial distribution and factors influencing the ammonium content in the riparian zone aquitard of a small watershed were analyzed through three geological boreholes with increasing distances from the river: boreholes A > B > C. The results show that the distribution of ammonium was closely related to the lithology of sediments. Under the influence of the river and floods, the average content of ion exchange form of ammonium of sediments in borehole A (stable sedimentary environment) was 94.31 mg kg⁻¹, accounting for 21.2% of the transferable ammonium. The average proportions of ion exchange form of ammonium in the transferable ammonium of boreholes B and C (unstable sedimentary environment) were 19.1% and 17.4%, respectively. The carbonate and iron-manganese oxide forms of ammonium content of sediments in three boreholes were 0.96–15.28 mg kg⁻¹ and 2.3–54.4 mg kg⁻¹, respectively; this was mainly affected by the pH and Eh of the sedimentary environment. Organic sulfide, the form of transferable ammonium of sediments mainly exists in organic matter. The ammonium content in pore water generally increased with depth and was mainly derived from the mineralization of humic-like organic matter in borehole A. The ammonium in pore water in boreholes B and C mixed with ammonium from the mineralization of organic matter and the desorption of ion exchange form ammonium within sediments. The ammonium content in the pore water (up to 5.34 mg L⁻¹) was much higher than the limit for drinking water of 0.5 mg L⁻¹ in China. Therefore, the aquitard has a high risk of releasing ammonium and poses a certain threat to the quality of groundwater.
Show more [+] Less [-]Spatiotemporal dynamics and impacts of socioeconomic and natural conditions on PM2.5 in the Yangtze River Economic Belt Full text
2020
Liu, Xiao-Jie | Xia, Si-You | Yang, Yu | Wu, Jing-fen | Zhou, Yan-Nan | Ren, Ya-Wen
The determination of the spatiotemporal patterns and driving factors of PM₂.₅ is of great interest to the atmospheric and climate science community, who aim to understand and better control the atmospheric linkage indicators. However, most previous studies have been conducted on pollution-sensitive cities, and there is a lack of large-scale and long-term systematic analyses. In this study, we investigated the spatiotemporal evolution of PM₂.₅ and its influencing factors by using an exploratory spatiotemporal data analysis (ESTDA) technique and spatial econometric model based on remote sensing imagery inversion data of the Yangtze River Economic Belt (YREB), China, between 2000 and 2016. The results showed that 1) the annual value of PM₂.₅ was in the range of 23.49–37.67 μg/m³ with an inverted U-shaped change trend, and the PM₂.₅ distribution presented distinct spatial heterogeneity; 2) there was a strong local spatial dependence and dynamic PM₂.₅ growth process, and the spatial agglomeration of PM₂.₅ exhibited higher path-dependence and spatial locking characteristics; and 3) the endogenous interaction effect of PM₂.₅ was significant, where each 1% increase in the neighbouring PM₂.₅ levels caused the local PM₂.₅ to increase by at least 0.4%. Natural and anthropogenic factors directly and indirectly influenced the PM₂.₅ levels. Our results provide spatial decision references for coordinated trans-regional air pollution governance as well as support for further studies which can inform sustainable development strategies in the YREB.
Show more [+] Less [-]Low temperature advanced nitrogen and sulfate removal from landfill leachate by nitrite-anammox and sulfate-anammox Full text
2020
Wu, Linuo | Yan, Zhibin | Li, Jin | Huang, Shan | Li, Zhi | Shen, Mingyu | Peng, Yongzhen
Under anaerobic conditions, ammonium (NH₄⁺) can react with nitrite (NO₂⁻) and sulfate (SO₄²⁻), termed nitrite-anammox (NirAnammox) and sulfate-anammox (Sulfammox), respectively. However, how to remove NH₄⁺ and SO₄²⁻ together from leachate is unclear. In this study, NirAnammox and Sulfammox cooperatively achieved nitrogen and sulfate removal from leachate using a biological process at low temperature (14–15 °C). NH₄⁺, total nitrogen (TN), and SO₄²⁻ concentrations in the influent were 610–700, 670–900, 1870–1920 mg/L, respectively, and 10 ± 1, 35 ± 3, and 897.7 ± 10 mg/L, respectively, in the effluent. Sulfammox, and NirAnammox (including partial nitrification) removed 44.2% and 35.46% of the NH₄⁺, respectively. Therefore, because leachate contains high concentrations of NH₄⁺ and SO₄²⁻, NirAnammox and Sulfammox can easily occur together, with nitrogen removal by Sulfammox being more than NirAnammox. The relative abundance of dominant bacteria of the Sulfammox were 10–20 times that of Candidatus Kuenenia (NirAnammox) in each reactor. Organic matter negatively affected NirAnammox, but not Sulfammox. Dissolved oxygen negatively affected both.
Show more [+] Less [-]Polyvinylpyrolidone-functionalized silver nanoparticles do not affect aerobic performance or fractional rates of protein synthesis in rainbow trout (Oncorhynchus mykiss) Full text
2020
Ollerhead, K.M. | Adams, O.A. | Willett, N.J. | Gates, M.A. | Bennett, J.C. | Murimboh, J. | Morash, A.J. | Lamarre, S.G. | MacCormack, T.J.
Aerobic performance in fish is linked to individual and population fitness and can be impacted by anthropogenic contaminants. Exposure to some engineered nanomaterials, including silver nanoparticles (nAg), reduces rates of oxygen consumption in some fish species, but the underlying mechanisms remain unclear. In addition, their effects on swim performance have not been studied. Our aim was to quantify the impact of exposure to functionalized nAg on aerobic scope and swim performance in rainbow trout (Oncorhychus mykiss) and to characterize the contribution of changing rates of protein synthesis to these physiological endpoints. Fish were exposed for 48 h to 5 nm polyvinylpyrolidone-functionalized nAg (nAgPVP; 100 μg L⁻¹) or 0.22 μg L⁻¹ Ag⁺ (as AgNO₃), which was the measured quantity of Ag released from the nAgPVP over that time period. Aerobic scope, critical swimming speed (Ucᵣᵢₜ), and fractional rates of protein synthesis (Kₛ), were then assessed, along with indicators of osmoregulation and cardiotoxicity. Neither nAgPVP, nor Ag⁺ exposure significantly altered aerobic scope, its component parts, or swim performance. Kₛ was similarly unaffected in 8 tissue types, though it tended to be lower in liver of nAgPVP treated fish. The treatments tended to decrease gill Na⁺/K⁺-ATPase activity, but effects were not significant. The latter results suggest that a longer or more concentrated nAgPVP exposure may induce significant effects. Although this same formulation of nAgPVP is bioactive in other fish, it had no effects on rainbow trout under the conditions tested. Such findings on common model animals like trout may thus misrepresent the safety of nAg to more sensitive species.
Show more [+] Less [-]Toxicogenomics provides insights to toxicity pathways of neonicotinoids to aquatic insect, Chironomus dilutus Full text
2020
Wei, Fenghua | Wang, Dali | Li, Huizhen | Xia, Pu | Ran, Yong | Yau, Ching
Neonicotinoid insecticides have posed a great threat to non-target organisms, yet the mechanisms underlying their toxicity are not well characterized. Major modes of action (MoAs) of imidacloprid were analyzed in an aquatic insect Chironomus dilutus. Lethal and sublethal outcomes were assessed in the midges after 96-h exposure to imidacloprid. Global transcriptomic profiles were determined using de novo RNA-sequencing to more holistically identify toxicity pathways. Transcriptional 10% biological potency values derived from ranked KEGG pathways and GO terms were 0.02 (0.01–0.08) (mean (95% confidence interval) and 0.05 (0.04–0.06) μg L⁻¹, respectively, which were more sensitive than those from phenotypic traits (10% lethal concentration: 0.44 (0.23–0.79) μg L⁻¹; 10% burrowing behavior concentration: 0.30 (0.22–0.43) μg L⁻¹). Major MoAs of imidacloprid in aquatic species were identified as follows: the activation of nicotinic acetylcholine receptors (nAChRs) induced by imidacloprid impaired organisms’ nerve system through calcium ion homeostasis imbalance and mitochondrial dysfunction, which posed oxidative stress and DNA damage and eventually caused death of organisms. The current investigation highlighted that imidacloprid affected C. dilutus at environmentally relevant concentrations, and elucidated toxicity pathways derived from gene alteration to individual outcomes, calling for more attention to toxicity of neonicotinoids to aquatic organisms.
Show more [+] Less [-]