Refine search
Results 1621-1630 of 6,546
Neighbourhood-scale dispersion of traffic-induced ultrafine particles in central London: WRF large eddy simulations Full text
2020
Zhong, Jian | Nikolova, Irina | Cai, Xiaoming | MacKenzie, A Rob | Alam, Mohammed S. | Xu, Ruixin | Singh, Ajit | Harrison, Roy M.
Traffic-generated ultrafine particles (UFPs) in the urban atmosphere have a high proportion of their composition comprised of semi-volatile compounds (SVOCs). The evaporation/condensation processes of these SVOCs can alter UFP number size distributions and play an important role in determining the fate of UFPs in urban areas. The neighbourhood-scale dispersion (over distances < 1 km) and evolution of traffic-generated UFPs for a real-world street network in central London was simulated by using the WRF-LES model (the large eddy simulation mode of the Weather Research and Forecasting modelling system) coupled with multicomponent microphysics. The neighbourhood scale dispersion of UFPs was significantly influenced by the spatial pattern of the real-world street emissions. Model output indicated the shrinkage of the peak diameter from the emitted profile to the downwind profile, due to an evaporation process during neighbourhood-scale dispersion. The dilution process and the aerosol microphysics interact with each other during the neighbourhood dispersion of UFPs, yielding model output that compares well with measurements made at a location downwind of an intense roadside source. The model captured the total SVOC concentrations well, with overestimations for gas concentrations and underestimations for particle concentrations, particularly of the lighter SVOCs. The contribution of the intense source, Marylebone Road (MR) in London, to concentrations at the downwind location (as estimated by a model scenario with emissions from MR only) is comparable with that of the rest of the street network (a scenario without emissions from MR), implying that both are important. An appreciable level of non-linearity is demonstrated for nucleation mode UFPs and medium range carbon SVOCs at the downwind receptor site.
Show more [+] Less [-]Urinary metabolites of organophosphate esters in women and their relationship with serum lipids: An exploratory analysis Full text
2020
Siddique, Shabana | Harris, Shelley A. | Kosarac, Ivana | Latifovic, Lidija | Kubwabo, Cariton
Organophosphate esters (OPEs) are high-production volume chemicals. Use of OPEs has largely increased since the phase-out/ban of polybrominated diphenyl ethers (PBDEs). The ubiquitous occurrence of OPEs, in higher concentrations in abiotic matrices than brominated flame retardants (BFRs), is a concern because several of the OPEs have been linked to adverse health effects. In this study, urinary metabolites of OPEs were measured in a subset of a population-based sample of women of child bearing age recruited in Ontario, and associations between serum lipid levels and urinary concentrations of OPE metabolites were evaluated. Urine samples (n = 120) were extracted using automated solid phase extraction and analysed by ultra-performance liquid chromatography coupled to tandem mass spectrometry (UPLC-MS/MS). Diphenyl phosphate (DPHP), bis(2-chloropropyl) phosphate (BCIPP) and bis(1,3-dichloro-2 propyl) phosphate (BDCIPP) were detected with frequencies of 100%, 76% and 75% at median concentrations of 13.8 ng/mL, 0.5 ng/mL and 1.8 ng/mL, respectively. Bis(2-chloroethyl) hydrogen phosphate (BCEP) and di-cresyl phosphate (DCP; mixture of 3 isomers) were detected in 52% and 42% of the samples, respectively. Detected at lower frequencies were 1-hydroxy-2-propyl bis(1-chloro-2-propyl) phosphate (BCIPHIPP, 29%), bis-2(butoxyethyl) phosphate (BBOEP, 11%), and desbutyl-tris-(2-butoxy-ethyl) phosphate (desbutyl TBOEP, 9%). Using multiple regression model, a negative statistically significant correlation was observed between BCEP and cholesterol (p = 0.04), as well as BCEP and total lipid (p = 0.04). Whereas BCIPP was positively and significantly correlated with cholesterol (p = 0.003) and LDL (p = 0.001). Additional work to further explore these relationships and to evaluate more recently identified OPE metabolites is warranted.
Show more [+] Less [-]Use of iron mining tailings from dams for carbon nanotubes synthesis in fluidized bed for 17α-ethinylestradiol removal Full text
2020
Silva, Rayane Cristian Ferreira | Ardisson, José Domingos | Cotta, Alexandre Alberto Chaves | Araujo, Maria Helena | Teixeira, Ana Paula de Carvalho
This work reports the use of an iron ore tailings from waste dam as a catalyst and support for carbon nanotubes synthesis and their application in the adsorption of the 17α-ethinylestradiol hormone. The synthesis was carried out by Chemical Vapor Deposition (CVD) in a Fluidized Bed system using: ethylene at temperatures of 500, 600 and 700 °C, and acetonitrile at 500, 600, 700, 800 and 900 °C. The transmission electron microscopy (TEM) results showed that the two higher temperatures in each case favored the formation of nanostructures like carbon nanotubes (CNTs), with good yields. The ethylene source generated classic tubular structures of multiple walls. On the other hand, acetonitrile provided the formation of tubes with less organization, known as bamboo like. This morphology was caused by the insertion of nitrogen into the graphite structure (doping), which originates from the carbon source. The adsorptive capacity of the materials for 17α-Ethinylestradiol removal ranging from 9.2 mg g⁻¹ to 22.3 mg g⁻¹. The kinetic and adsorption isotherm studies were also performed for the systems. As for kinetics, all of them presented pseudo-second order behavior. In relation to the type of isotherm, the systems showed Freundlich behavior, that is, the adsorption occurs in multiple layers. Finally, it was concluded that the use of an iron ore tail as a catalyst in the production of CNTs by CVD is feasible. The materials synthesized still had good adsorptive capacity for an emerging contaminant, thus this study allowed the investigation of two environmental problems.
Show more [+] Less [-]Seasonal characteristics of aerosols (PM2.5 and PM10) and their source apportionment using PMF: A four year study over Delhi, India Full text
2020
Jain, Srishti | Sharma, S.K. | Vijayan, En. | Mandal, T.K.
The present study attempts to explore and compare the seasonal variability in chemical composition and contributions of different sources of fine and coarse fractions of aerosols (PM₂.₅ and PM₁₀) in Delhi, India from January 2013 to December 2016. The annual average concentrations of PM₂.₅ and PM₁₀ were 131 ± 79 μg m⁻³ (range: 17–417 μg m⁻³) and 238 ± 106 μg m⁻³ (range: 34–537 μg m⁻³), respectively. PM₂.₅ and PM₁₀ samples were chemically characterized to assess their chemical components [i.e. organic carbon (OC), elemental carbon (EC), water soluble inorganic ionic components (WSICs) and heavy and trace elements] and then used for estimation of enrichment factors (EFs) and applied positive matrix factorization (PMF5) model to evaluate their prominent sources on seasonal basis in Delhi. PMF identified eight major sources i.e. Secondary nitrate (SN), secondary sulphate (SS), vehicular emissions (VE), biomass burning (BB), soil dust (SD), fossil fuel combustion (FFC), sodium and magnesium salts (SMS) and industrial emissions (IE). Total carbon contributes ∼28% to the total PM₂.₅ concentration and 24% to the total PM₁₀ concentration and followed the similar seasonality pattern. SN and SS followed opposite seasonal pattern, where SN was higher during colder seasons while SS was greater during warm seasons. The seasonal differences in VE contributions were not very striking as it prevails evidently most of year. Emissions from BB is one of the major sources in Delhi with larger contribution during winter and post monsoon seasons due to stable meteorological conditions and aggrandized biomass burning (agriculture residue burning in and around the regions; mainly Punjab and Haryana) and domestic heating during the season. Conditional Bivariate Probability Function (CBPF) plots revealed that the maximum concentrations of PM₂.₅ and PM₁₀ were carried by north westerly winds (north-western Indo Gangetic Plains of India).
Show more [+] Less [-]Alternatives of perfluoroalkyl acids and hepatitis B virus surface antibody in adults: Isomers of C8 Health Project in China Full text
2020
Zeng, Xiao-Wen | Li, Qing-Qing | Chu, Chu | Ye, Wan-Lin | Yu, Shu | Ma, Huimin | Zeng, Xiao-Yun | Zhou, Yang | Yu, Hong-Yao | Hu, Liwen | Yang, Bo-Yi | Dong, Guang-Hui
Previous epidemiological and experimental studies have shown that legacy perfluoroalkyl acids (PFAAs) are immunotoxic. However, whether the immunosuppressive effects in PFAA alternatives which recently have been widely detected in the environment are unknown. To address this knowledge gap, we investigated the relationship of serum legacy PFAAs and PFAA alternatives with the antibody of hepatitis B virus in adults. We recruited 605 participants from a cross-sectional study, the Isomer of C8 Health Project in China. We measured two representative legacy PFAAs (perfluorooctane sulfonate, PFOS and perfluorooctanoic acid, PFOA), and three PFAA alternatives (two chlorinated polyfluorinated ether sulfonic acids, Cl-PFESAs and perfluorobutanoic acid, PFBA) in serum using ultra-performance liquid chromatograph-tandem mass spectrometry (UPLC-MS/MS). We applied linear and logistic regression models to analyze associations between serum PFAAs and hepatitis B surface antibody (HBsAb) with multivariable adjustments. We found negative associations between serum PFAAs concentrations and HBsAb. Lower serum HBsAb levels (log mIU/mL) were observed for each log-unit increase in linear PFOS (β = −0.31, 95% confidential interval: 0.84, −0.18), 6:2 PFESA (β = −0.81, 95% CI: 1.20, −0.42), 8:2 PFESA (β = −0.29, 95% CI: 0.43, −0.14) and PFBA (β = −0.18, 95% CI: 0.28, −0.08). The association between PFAAs and HBsAb seronegative seemed to be higher for 6:2 PFESA (odds ratio = 3.32, 95% CI: 2.16, 5.10) than its predecessors, linear PFOS (OR = 1.96, 95% CI: 1.37, 2.81) and branched PFOS isomers (OR = 1.64, 95% CI: 1.05, 2.56). We report new evidence that exposure to PFAA alternatives are associated with lower HBsAb in adults. This association seems to be stronger in 6:2 PFESA than PFOS. Our results suggest that more studies are needed to clarify the potential toxicity of PFAA alternatives in human which will facilitate better chemical regulations for PFAAs.
Show more [+] Less [-]Effects of ozone on maize (Zea mays L.) photosynthetic physiology, biomass and yield components based on exposure- and flux-response relationships Full text
2020
Peng, Jinlong | Shang, Bo | Xu, Yansen | Feng, Zhaozhong | Calatayud, Vicent
Since the Industrial Revolution, the global ambient O3 concentration has more than doubled. Negative impact of O3 on some common crops such as wheat and soybeans has been widely recognized, but there is relatively little information about maize, the typical C4 plant and third most important crop worldwide. To partly compensate this knowledge gap, the maize cultivar (Zhengdan 958, ZD958) with maximum planting area in China was exposed to a range of chronic ozone (O3) exposures in open top chambers (OTCs). The O3 effects on this highly important crop were estimated in relation to two O3 metrics, AOT40 (accumulated hourly O3 concentration over a threshold of 40 ppb during daylight hours) and POD6 (Phytotoxic O3 Dose above a threshold flux of 6 nmol O3 m−2 s−1 during a specified period). We found that (1) the reduced light-saturated net photosynthetic rate (Asat) mainly caused by non-stomatal limitations across heading and grain filling stages, but the stomatal limitations at the former stage were stronger than those at the latter stage; (2) impact of O3 on water use efficiency (WUE) of maize was significantly dependent on developmental stage; (3) yield loss induced by O3 was mainly due to a reduction in kernels weight rather than in the number of kernels; (4) the performance of AOT40 and POD6 was similar, according to their determination coefficients (R2); (5) the order of O3 sensitivity among different parameters was photosynthetic parameters > biomass parameters > yield-related parameters; (6) Responses of Asat to O3 between heading and gran filling stages were significantly different based on AOT40 metric, but not POD6. The proposed O3 metrics-response relationships will be valuable for O3 risk assessment in Asia and also for crop productivity models including the influence of O3.
Show more [+] Less [-]The associations between prenatal exposure to polycyclic aromatic hydrocarbon metabolites, umbilical cord blood mitochondrial DNA copy number, and children’s neurobehavioral development Full text
2020
Cao, Xiaomin | Li, Jinyu | Cheng, Lin | Deng, Yunjun | Li, Yanning | Yan, Zhiwei | Duan, Lei | Yang, Jin | Niu, Qiao | Perera, Frederica | Nie, Jisheng | Tang, Deliang
Exposure to polycyclic aromatic hydrocarbons (PAHs) during pregnancy is a risk factor for adverse neurobehavioral development outcomes. Mitochondrial DNA are sensitive to environmental toxicants due to the limited ability of repairing. The change of mitochondrial DNA copy number (mtDNAcn) might be a biologically mechanism linking PAH exposure and children’s neurobehavioral impairment. Our aims are to explore whether PAH metabolites in maternal urine were associated with children’s neurobehavioral development at 2 years old and umbilical cord blood mtDNAcn, and whether mtDNAcn was a mediator of PAH-related neurobehavioral development. We included 158 non-smoking pregnant women from Taiyuan City, Shanxi Province. Maternal urinary eleven PAH metabolites were detected by high performance liquid chromatography with tandem mass spectrometry (HPLC-MS/MS). MtDNAcn in cord blood was detected by real time quantitative polymerase chain reaction (RT-PCR). Children’s neurodevelopment was measured by Gesell Developmental Schedules (GDS) when children were two years age. Generalized linear models and restricted cubic spline models were applied to assess the relationships between PAH metabolites in maternal urine and GDS scores and mtDNAcn. A mediation analysis was also conducted. Generalized linear models showed the relationships of sum of PAH metabolites (Σ-OHPAHs) in maternal urine with decreased motor score, and Σ-OHPAHs with increased mtDNAcn (p for trend < 0.05). Urinary levels of Ln (Σ-OHPAHs) increased one unit was related to a 2.08 decreased in motor scores, and Ln (Σ-OHPAHs) increased one unit was related to 0.15 increased in mtDNAcn. Mediation analysis did not find mtDNAcn can be a mediator between PAH metabolites and neurobehavioral development. Our results suggest that prenatal exposure to PAH decreased children’s neurobehavioral development scores and increased mtDNAcn. And reducing exposure to PAH during pregnancy will benefit to improving neurobehavioral development in children.In our present cohort study, sum of PAH metabolites in urine of pregnant women were related with motor score and were positively associated with umbilical cord blood mtDNA copy number.
Show more [+] Less [-]Comparison of pollutant source tracking approaches: Heavy metals deposited on urban road surfaces as a case study Full text
2020
Hong, Nian | Yang, Bo | Tsang, Daniel C.W. | Liu, An
A range of source tracking approaches have been developed to identify sources in the environmental pollution research field. A comparison of source tracking approaches is essential for a better understanding and practical applications of these approaches. This study compared the commonly used source tracking approaches, namely positive matrix factorization (PMF), Unmix, flag element ratio (FER), and chemical mass-balance based stochastic approach (SCMD). A case study was illustrated for tracing heavy metals (Pb, Zn, Cr, Cu, and Ni) attached to road deposited sediments, which can significantly influence urban road stormwater quality. The results indicated that the accuracy of PMF and Unmix are affected by the number of chemical species used and whether useful markers can be identified for particular sources. However, this does not have an essential influence on FER and SCMD. PMF and Unmix are easier on data preparation and calculation processes but more difficult for source identification process than FER and SCMD. This study also provided recommendations related to the selection of source tracking approach based on different study scenarios and result requirements. These study results are able to provide important guidance for undertaking effective source tracking and devising environmental pollution mitigations.
Show more [+] Less [-]Efficient multiresidue determination method for 168 pharmaceuticals and metabolites: Optimization and application to raw wastewater, wastewater effluent, and surface water in Beijing, China Full text
2020
Zhang, Yizhe | Duan, Lei | Wang, Bin | Liu, Cristina Su | Jia, Yanbo | Zhai, Nannan | Blaney, Lee | Yu, Gang
New analytical methods are needed to efficiently measure the growing list of priority pharmaceuticals in environmental samples. In this regard, a rapid, sensitive, and robust method was developed for quantitation of 168 pharmaceuticals and pharmaceutical metabolites using solid-phase extraction (SPE) and liquid chromatography with tandem mass spectrometry. The extraction protocol and instrumental efficiency were specifically addressed to increase analytical workload and throughput. The optimized protocols, which are five times more efficient than US EPA Method 1694, enabled analyte recoveries that ranged from 77% to 117% for 162 analytes with method quantitation limits (MQLs) as low as 0.1 ng L⁻¹. To verify the suitability of the improved analytical method for environmental samples, 24-h composite samples of raw wastewater and wastewater effluent, along with downstream surface water, were analyzed. Overall, 143/168 target compounds were identified in at least one of the samples, and 130/168 analytes were present at concentrations above their MQLs. The total mass concentration of the measured analytes decreased by 93% during wastewater treatment. The analyte concentrations in the wastewater effluent were comparable to those measured in surface water 1 km downstream of the wastewater discharge point. Ultimately, the comprehensive method will serve as an important tool to inform the occurrence, fate, transport, and toxicity of a large suite of priority pharmaceuticals and pharmaceutical metabolites in natural and engineered systems.
Show more [+] Less [-]Uptake, translocation and toxicity of chlorinated polyfluoroalkyl ether potassium sulfonate (F53B) and chromium co-contamination in water spinach (Ipomoea aquatica Forsk) Full text
2020
Tang, Tianhao | Liu, Xiaochun | Wang, Longqian | Zuh, Achuo Anitta | Qiao, Weichuan | Huang, Jun
Bioaccumulation and toxicity of per-and polyfluoroalkyl substances and metal in plants have been confirmed, however their contamination in soil and plants still requires extensive investigation. In this study the combined effects of chlorinated polyfluoroalkyl ether potassium sulfonate (F53B) and chromium (Cr) on water spinach (Ipomoea aquatica Forsk) were investigated. Compared with each single stress, the combination of F53B and Cr (VI) reduced the biomass and height and increasingly accumulated in the roots and destroyed the cell structure. Besides, the co-contamination led to the immobilization of F53B and Cr (VI) in soil, which affected their migration in soil and transfer to plants. The antioxidant response and photosynthesis of the plant weakened under the single Cr (VI) and enhanced under the single F53B treatment; however the contamination of F53B and Cr (VI) could also reduce this effect, as confirmed by the gene expression of MTa, psbA and psbcL genes. This study provides an evidence of the environmental risks resulting from the coexistence of F53B and Cr (VI).
Show more [+] Less [-]