Refine search
Results 1631-1640 of 7,264
Silicon nanoparticles in higher plants: Uptake, action, stress tolerance, and crosstalk with phytohormones, antioxidants, and other signalling molecules
2022
Mukarram, Mohammad | Petrik, Peter | Mushtaq, Zeenat | Khan, M. Masroor A. | Gulfishan, Mohd | Lux, Alexander
Silicon is absorbed as uncharged mono-silicic acid by plant roots through passive absorption of Lsi1, an influx transporter belonging to the aquaporin protein family. Lsi2 then actively effluxes silicon from root cells towards the xylem from where it is exported by Lsi6 for silicon distribution and accumulation to other parts. Recently, it was proposed that silicon nanoparticles (SiNPs) might share a similar route for their uptake and transport. SiNPs then initiate a cascade of morphophysiological adjustments that improve the plant physiology through regulating the expression of many photosynthetic genes and proteins along with photosystem I (PSI) and PSII assemblies. Subsequent improvement in photosynthetic performance and stomatal behaviour correspond to higher growth, development, and productivity. On many occasions, SiNPs have demonstrated a protective role during stressful environments by improving plant-water status, source-sink potential, reactive oxygen species (ROS) metabolism, and enzymatic profile. The present review comprehensively discusses the crop improvement potential of SiNPs stretching their role during optimal and abiotic stress conditions including salinity, drought, temperature, heavy metals, and ultraviolet (UV) radiation. Moreover, in the later section of this review, we offered the understanding that most of these upgrades can be explained by SiNPs intricate correspondence with phytohormones, antioxidants, and signalling molecules. SiNPs can modulate the endogenous phytohormones level such as abscisic acid (ABA), auxins (IAAs), cytokinins (CKs), ethylene (ET), gibberellins (GAs), and jasmonic acid (JA). Altered phytohormones level affects plant growth, development, and productivity at various organ and tissue levels. Similarly, SiNPs regulate the activities of catalase (CAT), ascorbate peroxidase (APX), superoxide dismutase (SOD), and ascorbate-glutathione (AsA-GSH) cycle leading to an upgraded defence system. At the cellular and subcellular levels, SiNPs crosstalk with various signalling molecules such as Ca²⁺, K⁺, Na⁺, nitric oxide (NO), ROS, soluble sugars, and transcription factors (TFs) was also explained.
Show more [+] Less [-]A sustainable Decision Support System for soil bioremediation of toluene incorporating UN sustainable development goals
2022
Akbarian, Hadi | Jalali, Farhad Mahmoudi | Gheibi, Mohammad | Hajiaghaei-Keshteli, Mostafa | Akrami, Mehran | Sarmah, Ajit K.
Decision Support System (DSS) is a novel approach for smart, sustainable controlling of environmental phenomena and purification processes. Toluene is one of the most widely used petroleum products, which adversely impacts on human health. In this study, Fusarium Solani fungi are utilized as the engine of the toluene bioremediation procedure for the monitoring part of DSS. Experiments are optimized by Central Composite Design (CCD) - Response Surface Methodology (RSM), and the behavior of the mentioned fungi is estimated by M5 Pruned model tree (M5P), Gaussian Processes (GP), and Sequential Minimal Optimization (SMOreg) algorithms as the prediction section of DSS. Finally, the control stage of DSS is provided by integrated Petri Net modeling and Failure Modes and Effects Analysis (FMEA). The findings showed that Aeration Intensity (AI) and Fungi load/Biological Waste (F/BW) are the most influential mechanical and biological factors, with P-value of 0.0001 and 0.0003, respectively. Likewise, the optimal values of main mechanical parameters include AI, and the space between pipes (S) are equal to 13.76 m³/h and 15.99 cm, respectively. Also, the optimum conditions of biological features containing F/BW and pH are 0.001 mg/g and 7.56. In accordance with the kinetic study, bioremediation of toluene by Fusarium Solani is done based on a first-order reaction with a 0.034 s-1 kinetic coefficient. Finally, the machine learning practices showed that the GP (R2 = 0.98) and M5P (R2 = 0.94) have the most precision for predicting Removal Percentage (RP) for mechanical and biological factors, respectively. At the end of the present research, it is found that by controlling seven possible risk factors in bioremediation operation through the FMEA- Petri Net technique, efficiency of the process can be adjusted to optimum value.
Show more [+] Less [-]Iron oxide nanoparticles impart cross tolerance to arsenate stress in rice roots through involvement of nitric oxide
2022
Rai, Padmaja | Pratap Singh, Vijay | Sharma, Samarth | Tripathi, Durgesh Kumar | Sharma, Shivesh
The growth and development patterns of crop plants are being seriously threatened by arsenic (As) contamination in the soil, and it also acts as a major hurdle in crop productivity. This study focuses on arsenate As(V) mediated toxicity in rice plants. Further, among the different type of NPs, iron oxide nanoparticles (FeO NPs) display a dose-dependent effect but their potential role in mitigating As(V) stress is still elusive. FeO NPs (500 μM) play a role in imparting cross-tolerance against As(V) induced toxicity in rice. Growth attributes, photosynthetic performance, nutrient contents and biochemical parameters were significantly altered by As(V). But FeO NPs rescued the negative consequences of As(V) by restricting its entry with the possible involvement of NO in rice roots. Moreover, results related with gene expression of NO(OsNoA1 and OsNIA1) and proline metabolism were greatly inhibited by As(V) toxicity. But, FeO NPs reversed the toxic effect of As(V) by improving proline metabolism and stimulating NO mediated up-regulation of antioxidant enzymes particularly glutathione-S-transferase which may be possible reasons for the reduction of As(V) toxicity in rice roots. Overall, it can be stated that FeO NPs may act as an As(V) barrier to restrict the As(V) uptake by roots and have the ability to confer cross tolerance by modulating various morphological, biochemical and molecular characteristics with possible intrinsic involvement of NO.
Show more [+] Less [-]Responses of reconstituted human bronchial epithelia from normal and health-compromised donors to non-volatile particulate matter emissions from an aircraft turbofan engine
2022
Delaval, Mathilde N. | Jonsdottir, Hulda R. | Leni, Zaira | Keller, Alejandro | Brem, Benjamin T. | Siegerist, Frithjof | Schönenberger, David | Durdina, Lukas | Elser, Miriam | Salathe, Matthias | Baumlin, Nathalie | Lobo, Prem | Burtscher, Heinz | Liati, Anthi | Geiser, Marianne
Health effects of particulate matter (PM) from aircraft engines have not been adequately studied since controlled laboratory studies reflecting realistic conditions regarding aerosols, target tissue, particle exposure and deposited particle dose are logistically challenging. Due to the important contributions of aircraft engine emissions to air pollution, we employed a unique experimental setup to deposit exhaust particles directly from an aircraft engine onto reconstituted human bronchial epithelia (HBE) at air-liquid interface under conditions similar to in vivo airways to mimic realistic human exposure. The toxicity of non-volatile PM (nvPM) from a CFM56-7B26 aircraft engine was evaluated under realistic engine conditions by sampling and exposing HBE derived from donors of normal and compromised health status to exhaust for 1 h followed by biomarker analysis 24 h post exposure. Particle deposition varied depending on the engine thrust levels with 85% thrust producing the highest nvPM mass and number emissions with estimated surface deposition of 3.17 × 10⁹ particles cm⁻² or 337.1 ng cm⁻². Transient increase in cytotoxicity was observed after exposure to nvPM in epithelia derived from a normal donor as well as a decrease in the secretion of interleukin 6 and monocyte chemotactic protein 1. Non-replicated multiple exposures of epithelia derived from a normal donor to nvPM primarily led to a pro-inflammatory response, while both cytotoxicity and oxidative stress induction remained unaffected. This raises concerns for the long-term implications of aircraft nvPM for human pulmonary health, especially in occupational settings.
Show more [+] Less [-]Sodium alginate/magnetic hydrogel microspheres from sugarcane bagasse for removal of sulfamethoxazole from sewage water: Batch and column modeling
2022
Prasannamedha, G. | Kumar, P Senthil | Shivaani, S. | Kokila, M.
Magnetic carbon were synthesized from sugarcane bagasse using hydrothermal carbonization followed by thermal activation was converted to solid state as beads (hydrogels SACFe) using sodium alginate and applied as adsorbent in removal sulfamethoxazole in batch and column mode. From adsorption parameter analysis it was confirmed that 0.6 g L⁻¹ SACFe was effective in removing 50 mg L⁻¹ of SMX at pH 6.2. Sorption of SMX on SACFe beads followed Elovich kinetics and Freundlich isotherm. It was further confirmed that sorption occurred on heterogeneous surface of SACFe beads with chemisorption as rate limiting step. Maximum adsorption capacity was obtained as 58.439 mg g⁻¹ pH studies revealed that charged assisted hydrogen bonding, EDA interactions are some of the mechanism that favoured removal of SMX. From column studies it was found that bead height of 2 cm and flow rate of 1.5 mL min⁻¹ found to be best in removing pollutant. Thomas model fitted better the experimental data stating that improved interaction between adsorbent and adsorbate act as major driving force tool in obtaining maximum sorption capacity. Breakthrough curve was completely affected by varied flow rate and bed height. Column adsorption was effective in reducing COD and BOD levels of sewage which are affected by toxic pollutants and miscellaneous compounds. Feasibility analysis showed that SACFe beads could be employed for real-time applications as it is cost, energy effective and easy recovery.
Show more [+] Less [-]Aspergillus niger-mediated release of phosphates from fish bone char reduces Pb phytoavailability in Pb-acid batteries polluted soil, and accumulation in fenugreek
2022
Tauqeer, Hafiz Muhammad | Basharat, Zeeshan | Adnan Ramzani, Pia Muhammad | Farhad, Muniba | Lewińska, Karolina | Turan, Veysel | Karczewska, Anna | Khan, Shahbaz Ali | Faran, Gull-e | Iqbal, Muhammad
Soil receiving discharges from Pb-acid batteries dismantling and restoring units (PBS) can have a high concentration of phytoavailable Pb. Reducing Pb phytoavailability in PBS can decline Pb uptake in food crops and minimize the risks to humans and the environment. This pot study aimed to reduce the concentration of phytoavailable Pb in PBS through Aspergillus niger (A. niger)−mediated release of PO₄³⁻ from fish bone [Apatite II (APII)] products. The PBS (Pb = 639 mg kg⁻¹ soil) was amended with APII powder (APII−P), APII char (APII−C), and A. niger inoculum as separate doses, and combining A. niger with APII−P (APII−P + A. niger) and APII−C (APII−C + A. niger). The effects of these treatments on reducing the phytoavailability of Pb in PBS and its uptake in fenugreek were examined. Additionally, enzymatic activities and microbial biomass carbon (MBC) in the PBS and the indices of plant physiology, nutrition, and antioxidant defense machinery were scoped. Results revealed that the APII−C + A. niger treatment was the most efficient one. Compared to the control, it significantly reduced the Pb phytoavailability (DTPA-extractable Pb fraction) in soil and its uptake in plant shoots, roots, and grain, up to 61%, 83%, 74%, and 92%. The grain produced under APII−C + A. niger were safe for human consumption as Pb concentration in grain was 4.01 mg kg⁻¹ DW, remaining within the permissible limit set by WHO/FAO (2007). The APII−C + A. niger treatment also improved soil pH, EC, CEC, MBC, available P content and enzymatic activities, and the fenugreek quality parameters. A. niger played a significant role in solubilizing PO₄³⁻ from APII−C, which reacted with Pb and formed insoluble Pb-phosphates, thereby reducing Pb phytoavailability in PBS and its uptake in plants. This study suggests APII−C + A. niger can remediate Pb-polluted soils via reducing Pb phytoavailability in them.
Show more [+] Less [-]Mapping agricultural use of pesticides to enable research and environmental health actions in Belgium
2022
Habran, Sarah | Philippart, Christelle | Jacquemin, Pierre | Remy, Suzanne
Given the many public health and environmental impacts associated with the use of pesticides, comprehensive pesticide application data are a high priority for environmental and health professionals, government agencies, and community groups in Wallonia (Belgium). In that context, geographic information system (GIS) approaches for mapping estimates of agricultural pesticide use were developed in the present study. Data on pesticide application rates and high-resolution annual datasets of the geographic distribution of crops were used to complete this analysis in Wallonia over the period 2015–2017. The method was implemented in Python in order to allow easy update and improvements of maps, or to segment maps by individual pesticides, chemical groups of pesticides (e.g. insecticides, herbicides), etc. Linked databases were created to classify, select, and possibly weight AIs according to specific requests and criteria. The results provide a first map of agricultural pesticide use in Wallonia, which depicts the best picture up to now of their geographic distribution. Maps of fungicides, herbicides, and plant growth regulators showed quite similar spatial patterns as the map of the combination of all pesticides. In contrast, the insecticide map showed a specific pattern related almost exclusively to dwarf-tree orchards in some municipalities in northern Wallonia. This research work is a preliminary result on the spatial characterization of agricultural pesticide use in Wallonia and give a valuable basis for research and environmental health actions in Belgium. Forthcoming developments will focus on exposure characterization to agricultural pesticides using GIS models. Using this information, policymakers will able to detect potential priority zones and take action to check and reduce agricultural pesticide loads in the environment.
Show more [+] Less [-]Contamination, exposure, and health risk assessment of Hg in Pakistan: A review
2022
Rashīd, Sājid | Shah, Izaz Ali | Supe Tulcan, Roberto Xavier | Rashid, Wajid | Sillanpaa, Mika
Mercury is a highly toxic and highly mobile heavy metal. It has been regarded as more toxic than other nonessential and toxic nonradioactive heavy metals. Moreover, it has a high tendency of bioaccumulation and biomagnification in the ecosystem. This study aimed to assess the environmental and health risks related to Hg. Seventy studies related to Hg in environmental media, aquatic biota, and food stuffs across Pakistan were reviewed, and their concentrations were used for ecological and human health risk assessments. High concentrations of Hg were reported in the environment, with maximum concentrations of 72 mg L⁻¹, 144 mg kg⁻¹, 887 mg kg⁻¹, and 49,807 ng m⁻³ in surface water, surface soil, surface sediments, and urban atmosphere, respectively. The possible non-carcinogenic health risk (hazard quotient) of Hg was assessed in soil, water, and fish. High risks were calculated for seafood and vegetable consumption, while low risks were estimated for soils and groundwater ingestion and exposure. Overall, children showed higher risks than adults. Last, the risk quotient analysis (RQ) revealed significant risks for aquatic species. RQs showed that multiple species, especially those with smaller resilience, could face long-term detrimental impacts. High, medium, and low risks were calculated from 66.66, 16.17, and 16.17% of the reported Hg concentrations.
Show more [+] Less [-]Reductive transformation of the insensitive munitions compound nitroguanidine by different iron-based reactive minerals
2022
Rios-Valenciana, Erika E. | Menezes, Osmar | Niu, Xi-Zhi | Romero, Jonathan | Root, Robert A. | Chorover, Jon | Sierra-Alvarez, Reyes | Field, Jim A.
Nitroguanidine (NQ) is an emerging contaminant being used by the military as a constituent of new insensitive munitions. NQ is also used in rocket propellants, smokeless pyrotechnics, and vehicle restraint systems. Its uncontrolled transformation in the environment can generate toxic and potentially mutagenic products, posing hazards that need to be remediated. NQ transformation has only been investigated to a limited extent. Thus, it is crucial to expand the narrow spectrum of NQ remediation strategies and understand its transformation pathways and end products. Iron-based reactive minerals should be investigated for NQ treatment because they are successfully used in existing technologies, such as permeable reactive barriers, for treating a wide range of organic pollutants. This study tested the ability of micron-sized zero-valent iron (m-ZVI), mackinawite, and commercial FeS, to transform NQ under anoxic conditions. NQ transformation followed pseudo-first-order kinetics. The reaction rate constants decreased as follows: commercial FeS > mackinawite > m-ZVI. For the assessed minerals, the NQ transformation started with the reduction of the nitro group forming nitrosoguanidine (NsoQ). Then, aminoguanidine (AQ) was accumulated during the reaction of NQ with m-ZVI, accounting for 86% of the nitrogen mass recovery. When NQ was reacted with commercial FeS, 45% and 20% of nitrogen were recovered as AQ and guanidine, respectively, after 24 h. Nonetheless, NsoQ persisted, contributing to the N-balance. When mackinawite was present, NsoQ disappeared, but AQ was not detected, and guanidine accounted for 11% of the nitrogen recovery. AQ was ultimately transformed into cyanamide, whose dimerization triggered the formation of cyanoguanidine. Alternatively, NsoQ was transformed into guanidine, which reacted with cyanamide to form biguanide. This is the first report systematically investigating the NQ transformation by different iron-based reactive minerals. The evidence indicates that these minerals are attractive alternatives for developing NQ remediation strategies.
Show more [+] Less [-]The concentration and biomagnification of PCBs and PBDEs across four trophic levels in a marine food web
2022
Madgett, Alethea S. | Yates, Kyari | Webster, Lynda | Mackenzie, Craig | Brownlow, Andrew | Moffat, Colin F.
Contracting Parties to the OSPAR Convention for the Protection of the Maine Environment of the North-East Atlantic are required to undertake monitoring and assessment of both inorganic and organic contaminants. There is a requirement to assess contaminants across different trophic levels on an ecosystem-specific basis. However, this is currently constrained by the availability of relevant samples to cover the full range of trophic levels. This study investigates the variability (inter- and intra-species variation) of the concentrations and distributions of thirty-two polychlorinated biphenyl (PCB) congeners and nine polybrominated diphenyl ether (PBDE) congeners in twenty-six species covering four trophic levels from different geographic locations around Scotland. Trophic magnification factors (TMFs) were calculated using a traditional method and a balanced method for both the ICES-7 PCBs and BDE47, to refine and improve the application of TMFs to assess and predict biomagnification risk to biota in the marine environment. There were clear differences in congener percentage distribution between sample categories and species, with differences influenced by physiological processes and eco-biological parameters. Trophic magnification was found to occur for the ICES-7 PCBs and BDE47 using the traditional method, with the highest degree of trophic magnification reported for CB52. An unbalanced dataset was found to influence the calculated TMF and in some cases, the overall conclusion of the trophic transfer of PCB and PBDE congeners. The balanced method is highly recommended for calculating TMFs to ensure that the TMF is a true indication of the biomagnification potential, particularly when conducting regional comparisons for which sampling requirements are difficult to achieve.
Show more [+] Less [-]