Refine search
Results 1681-1690 of 6,473
Urinary concentrations of phthalates in relation to circulating fatty acid profile in National Health and Nutrition Examination Survey, 2003–2004 and 2011–2012
2020
Li, Ming-Chieh | Lin, Jingyu | Guo, Yue Leon
Animal studies have suggested that phthalate exposure alters the fatty acid composition of blood plasma. Therefore, we conducted an epidemiological study to examine whether urinary concentrations of phthalates are correlated with circulating fatty acids in the general US population. The 2003–2004 and 2011–2012 National Health and Nutrition Examination Survey were used in this study. Ten urinary phthalate metabolites and 23 fatty acids were measured. Fatty acid patterns were identified using principal component analysis (PCA) with an eigenvalue greater than 1. A two-step analysis was performed. We first performed multivariable linear regressions to evaluate whether urinary phthalate metabolites were related to the PCA-derived components of blood fatty acid levels. Then we performed multivariable linear regressions to investigate each of the fatty acids that were suggestively correlated with some of the phthalates in PCA. There were 994 participants (51.91% women). As for men, after adjustments for potential confounding factors, MECPP, MEHHP, and ∑DEHP were all positively correlated with gamma-linolenic, myristoleic, and myristic acids; both MEHHP and ∑DEHP were positively correlated with stearic acid; MMP was positively correlated with docosahexaenoic acid. As for women, MMP was negatively correlated with docosanoic, lignoceric, and arachidic acids; MBzP was negatively correlated with docosahexaenoic acid; both MEHP and MCPP were negatively correlated with docosatetraenoic acid; MEHP was negatively correlated with arachidonic acid, and MCPP was negatively correlated with docosapentaenoic-6 acid. Our findings support that phthalates may be correlated with circulating fatty acids.
Show more [+] Less [-]Influence of colloidal Fe(OH)3 on the adsorption characteristics of strontium in porous media from a candidate high-level radioactive waste geological disposal site
2020
Du, Can | Zuo, Rui | Chen, Minhua | Wang, Jinsheng | Liu, Xin | Liu, Li | Lin, Yuanhui
Colloids in groundwater or geological barriers generally play a key role in the migration of special nuclides. Adsorption characteristics of strontium were investigated on porous media in the presence of colloidal Fe(OH)₃ from the Beishan Site, the only high-level radioactive waste disposal site candidate in China. The effects of colloid amounts, solid contents, and pH were determined and studied by batch texts. The results revealed that the presence of colloidal Fe(OH)₃ in porous media contributed to promotion of the sorption effect, and the influencing factors had a significant impact on the adsorption process. The sorption ability increased with increasing colloid amount when the equilibrium time was approximately 10 h under an optimal solid-liquid ratio of 20 g L⁻¹. The sorption effect in alkaline conditions was better than that under acidic conditions. The sorption kinetics indicated that the strong chemical interaction and/or surface complexation contributed primarily to strontium sorption. The sorption isotherms and model fitting revealed that the sorption of strontium onto porous media in the presence of colloidal Fe(OH)₃ was a monolayer adsorption, and the presence of colloidal Fe(OH)₃ is an important factor that greatly influences the removal of strontium from aqueous solutions. These findings provide useful information for the treatment of strontium in radioactive waste disposal sites.
Show more [+] Less [-]A phytoextraction trial strengthened by Streptomyces pactum and plant nutrients: In view of plant bioindicators and phytoextraction indices
2020
Guo, Di | Ren, Chunyan | Ali, Amjad | Zhang, Yang | Du, Juan | Wang, Ping | Li, Ronghua | Zhang, Zengqiang
The present work was done to explore the joint effect of Streptomyces pactum (Act12) and plant nutrients on phytoremediation of smelter-contaminated soils. The physiological indicators and phytoextraction indices of potherb mustard (Brassica juncea, Coss) grown in Act12 inoculated soil with or without Hoagland’s solution (H), humic acid (HA) and peat (PS) were evaluated. The results indicated that H, HA and PS acted synergistically with Act12, notably increasing chlorophyll and soluble protein contents and thereby promoting plant growth. Soil nutrient treatments reduced the antioxidant activities (PPO, CAT and POD) by 28.2–41.4%, 22.3–90.1% and 15.2–59.4% compared to control, respectively. Act12 and H treatments markedly facilitated plant to accumulate more cadmium (Cd) and zinc (Zn), but it was observed decreases when applied with HA and PS. Metal uptake (MU) values further indicated the differences in phytoextraction efficiency, i.e., H > PS > Control > HA. Taken together, Act12 combined with plant nutrients contributed to alleviating metal toxicity symptoms of plant. Hoagland’s solution and peat were highlighted in the present phytoextraction trial, and recommended as soil additives.
Show more [+] Less [-]Dynamics and dietary risk assessment of thiamethoxam in wheat, lettuce and tomato using field experiments and computational simulation
2020
Pang, Nannan | Fan, Xueqi | Fantke, Peter | Zhao, Shengming | Hu, Jiye
Thiamethoxam is a widely used pesticide applied to different field crops. To inform risk assessment for this pesticide across relevant crops, we usually rely on field trials, which require time, costs and energy. For providing reliable data across crops and reduce experimental efforts, field trials should be complemented with dynamic modelling. In the present work, we hence focused on combining field trials with dynamic modelling to simulate mass evolutions of the pesticide-plant-system for thiamethoxam applied to wheat, lettuce and tomato as three major food crops. Field trials were conducted with QuEChERS (quick, easy, cheap, effective, rugged and safe) liquid chromatography-mass spectrometry, which gave consistent maximum residue concentrations for thiamethoxam in wheat, lettuce and tomato. We used these residues to evaluate the related dietary risk of humans consuming these food crops. Our results indicated that thiamethoxam did not provide any unacceptable dietary risk for humans across these three food crops, which is in line with findings from previous studies. Results for the studied crops could be extrapolated to other crops and with that, our study constitutes a cost- and time-efficient way of providing reliable input for risk assessment of pesticides across crops, which is relevant for both practitioners and regulators.
Show more [+] Less [-]Smoked cigarette butt leachate impacts survival and behaviour of freshwater invertebrates
2020
Green, Dannielle Senga | Kregting, Louise | Boots, Bas
Smoked cigarette filters a. k.a. “butts”, composed of plastic (e.g. cellulose acetate) are one of the world’s most common litter items. In response to concerns about plastic pollution, biodegradable cellulose filters are being promoted as an environmentally safe alternative, however, once smoked, both contain toxins which can leach once discarded. The impacts of biodegradable butts as littered items on the receiving environment, in comparison with conventional butts has not yet been assessed. A freshwater mesocosm experiment was used to test the effects of leachate from smoked cellulose acetate versus smoked cellulose filters at a range of concentrations (0, 0.2, 1 and 5 butts L⁻¹) on the mortality and behaviour of four freshwater invertebrates (Dreissena polymorpha, Polycelis nigra, Planorbis planorbis and Bithynia tentaculata). Leachate derived from 5 butts L⁻¹ of either type of filter caused 60–100% mortality to all species within 5 days. Leachate derived from 1 butt L⁻¹ of either type resulted in adults being less active than those exposed to no or 0.2 butts L⁻¹ leachate. Cigarette butts, therefore, regardless of their perceived degradability can cause mortality and decreased activity of key freshwater invertebrates and should always be disposed of responsibly.
Show more [+] Less [-]High prevalence of plastic ingestion by Eriocheir sinensis and Carcinus maenas (Crustacea: Decapoda: Brachyura) in the Thames Estuary
2020
McGoran, Alexandra R. | Clark, Paul F. | Smith, Brian D. | Morritt, David
This study presents evidence for microplastic contamination in two resident species of brachyuran crab from the Thames Estuary: the native shore crab, Carcinus maenas (Linneaus, 1758) and the invasive Chinese mitten crab, Eriocheir sinensis (H. Milne Edwards, 1853). The gills, gastric mill and intestine of 94 C. maenas and 41 E. sinensis were examined. Crabs were sampled periodically (ca. every three months) between December 2018 and October 2019. A total of 874 plastics were recovered, ranging 34 μm–34 mm in length. Overall, 71.3% and 100% of C. maenas and E. sinensis, respectively, contained at least one item (fibre, film, fragment or tangle of fibres) in the gill chamber, gastric mill or gastrointestinal tract. The most common items were fibres (78.5%) but in some cases, particularly in the gastric mill, these were aggregated into tangles (7.8%). Almost all E. sinensis contained tangles of fibres (95.1%), whereas, relatively few C. maenas contained similar tangles (10.6%).
Show more [+] Less [-]Comparative study on gene expression profile in rat lung after repeated exposure to diesel and biodiesel exhausts upstream and downstream of a particle filter
2020
Lecureur, Valérie | Monteil, Christelle | Jaguin, Marie | Cazier, Fabrice | Preterre, David | Corbière, Cécile | Gosset, Pierre | Douki, Thierry | Sichel, François | Fardel, Olivier
Biodiesel is considered as a valuable and less toxic alternative to diesel. However, cellular and molecular effects of repeated exposure to biodiesel emissions from a recent engine equipped with a diesel particle filter (DPF) remain to be characterized. To gain insights about this point, the lung transcriptional signatures were analyzed for rats (n = 6 per group) exposed to filtered air, 30% rapeseed biodiesel (B30) blend or reference diesel (RF0), upstream and downstream a DPF, for 3 weeks (3 h/day, 5 days/week).Genomic analysis revealed a modest regulation of gene expression level (lower than a 2-fold) by both fuels and a higher number of genes regulated downstream the DPF than upstream, in response to either RF0 or to B30 exhaust emissions. The presence of DPF was found to notably impact the lung gene signature of rats exposed to B30. The number of genes regulated in common by both fuels was low, which is likely due to differences in concentrations of regulated pollutants in exhausts, notably for compound organic volatiles, polycyclic aromatic hydrocarbons, NO or NOx. Nevertheless, we have identified some pathways that were activated for both exhaust emissions, such as integrin-, IGF-1- and Rac-signaling pathways, likely reflecting the effects of gas phase products. By contrast, some canonical pathways relative to “oxidative phosphorylation” and “mitochondrial dysfunction” appear as specific to B30 exhaust emission; the repression of transcripts of mitochondrial respiratory chain in lung of rats exposed to B30 downstream of DPF supports the perturbation of mitochondria function.This study done with a recent diesel engine (compliant with the European IV emission standard) and commercially-available fuels reveals that the diesel blend composition and the presence of an after treatment system may modify lung gene signature of rats repeatedly exposed to exhaust emissions, however in a rather modest manner.
Show more [+] Less [-]Changes in light absorption by brown carbon in soot particles due to heterogeneous ozone aging in a smog chamber
2020
Kuang, Yu | Shang, Jing
Light absorption by brown carbon (BrC) is dynamic due to atmospheric aging processes, leading to complex and poorly constrained effects on photochemistry and climate. In this study, a smog chamber was used to simulate the heterogeneous ozone (O₃) aging of soot particles. Twelve aging times and seven O₃ concentrations were set to investigate the effects of aging degree on BrC light absorption. The results showed that light absorption by BrC was enhanced after O₃ aging, but followed a non-monotonic trend with an initial increase and subsequent decrease. An aging time of 60 min and O₃ concentration of 1.2 ppm were optimal for enhancing BrC absorption, where the contribution of BrC to total absorption and the contribution of BrC relative to black carbon absorption at 370 nm of ozonized soot were 23.0 ± 1.8% and 30.0 ± 3.0%, respectively, much greater than those of fresh soot (8.1 ± 1.1% and 8.8 ± 1.3%, respectively). The absorption Ångström exponent (AAE) and delta C (ΔC) of ozonized soot at 60 min ranged from 1.18 ± 0.01 to 1.31 ± 0.03 and from 13.5 ± 7.0 to 24.3 ± 13.5 μg m⁻³, respectively, and were greater than those of fresh soot (1.12 ± 0.02 and 8.0 ± 0.8 μg m⁻³), but also showed non-monotonic trends, suggesting the formation of BrC during O₃ aging. Comparative results indicated that AAE might be a better BrC indicator for soot than ΔC. The non-monotonic trend was tentatively explained by changes in organic carbon, oxygenated functional groups and conjugated structures, as well as polycyclic aromatic hydrocarbon (PAH) degradation and oxygenated PAH formation. The relative intensities of oxidative formation and degradation of chromophores may determine BrC evolution during O₃ aging. This study will be useful for clarifying BrC evolution in the atmosphere and estimating its radiative forcing.
Show more [+] Less [-]Significant restructuring and light absorption enhancement of black carbon particles by ammonium nitrate coating
2020
Yuan, Zheng | Zheng, Jun | Ma, Yan | Jiang, Youling | Li, Yilin | Wang, Ziqiong
Field observations have suggested that particulate nitrate can promote the aging of black carbon (BC), yet the mechanisms of the aging process and its impacts on BC’s light absorption are undetermined. Here we performed laboratory simulation of internal mixing of flame-generated BC aggregates with ammonium nitrate. Variations in particle size, mass, coating thickness, effective density, dynamic shape factor, and optical properties were determined online by a suite of instruments. With the development of coatings, the particle size initially decreased until reaching a coating thickness of ∼10 nm and then started increasing, accompanied by an increase in effective density and a decrease in dynamic shape factor, reflecting the transformation of BC particles from highly fractal to near-spherical morphology. This is partially attributable to the restructuring of BC cores to more compact forms. Exposing coated particles to elevated relative humidity (RH) led to additional BC morphology changes, even after drying. Particle light absorption and scattering were also amplified with ammonium nitrate coating, increasing with coating thickness and RH. For BC particles with a 17.8 nm coating, absorption and scattering were increased by 1.5- and 7.9-fold when cycled through 70% RH (5-70-5% RH), respectively. The irreversible restructuring of the BC core caused by condensation of ammonium nitrate and water altered both absorption and scattering, with a magnitude comparable to or even exceeding the effects of increased coating. Results show that ammonium nitrate is among the most efficient coating materials with respect to modifying BC morphology and optical properties compared with other inorganic and organic species investigated previously. Accordingly, mitigation of nitrate aerosols is necessary for the benefits of both air pollution control and reducing the impacts of BC on visibility impairment and radiative forcing on climate change. Our results also pointed out that the effect of BC core restructuring needs to be considered when evaluating BC’s light absorption enhancement.
Show more [+] Less [-]Anthropogenic contamination of residential environments from smelter As, Cu and Pb emissions: Implications for human health
2020
Fry, Kara L. | Wheeler, Cassandra Anne | Gillings, Max M. | Flegal, A Russell | Taylor, Mark Patrick
Communities in low-income and middle-income countries (LMIC) are disproportionally affected by industrial pollution compared to more developed nations. This study evaluates the dispersal and associated health risk of contaminant-laden soil and dust at a copper (Cu) smelter in Tsumeb, Namibia. It is Africa’s only smelter capable of treating complex Cu ores that contain high arsenic (As) contents (<1%). The analyses focused on the primary trace elements associated with ore processing at the smelter: As, Cu, and lead (Pb). Portable X-Ray fluorescence spectrometry (pXRF) of trace elements in soils (n = 83) and surface dust wipes (n = 80) showed that elemental contamination was spatially associated with proximity to smelter operations. Soil concentrations were below US EPA soil guidelines. Dust wipe values were elevated relative to sites distal from the facility and similar to those at other international smelter locations (As = 1012 μg/m² (95% CI 687–1337); Cu = 1838 μg/m² (95% CI 1191–2485); Pb = 1624 μg/m² (95% CI 862–2385)). Source apportionment for Pb contamination was assessed using Pb isotopic compositions (PbIC) of dust wipes (n = 22). These data revealed that the PbIC of 73% (n = 16/22) of these wipes corresponded to the PbIC of smelter slag and tailings, indicating contribution from industrial emissions to ongoing exposure risk. Modeling of carcinogenic risk showed that dust ingestion was the most important pathway, followed by inhalation, for both adults and children. Dermal contact to trace elements in dust was also determined to pose a carcinogenic risk for children, but not adults. Consequently, contemporary smelter operations remain an ongoing health risk to the surrounding community, in spite of recent efforts to improve emissions from the operations.
Show more [+] Less [-]