Refine search
Results 1701-1710 of 1,955
Seasonal variation of pharmaceutically active compounds in surface (Tagus River) and tap water (Central Spain) Full text
2013
Valcárcel, Y. | Alonso, S González | Rodríguez-Gil, J. L. | Castaño, A. | Montero, J. C. | Criado-Alvarez, J. J. | Mirón, I. J. | Catalá, M.
Numerous studies have shown the presence of pharmaceutically active compounds (PhACs) in different environmental compartments, for example, in surface water or wastewater ranging from nanograms per litre to micrograms per litre. Likewise, some recent studies have pointed to seasonal variability, thus indicating that PhAcs concentrations in the aquatic environment may depend on the time of year. This work intended to find out (1) whether Tagus fluvial and drinking water were polluted with different groups of PhACs and (2) if their concentrations differed between winter and summer seasons. From the 58 substances analysed, 41 were found belonging to the main therapeutic groups. Statistical differences were seen for antibacterials, antidepressants, anxiolytics, antiepileptics, and cardiovascular drugs, with higher concentrations being detected in winter than in summer. These results might indicate that the PhACs analysed in this study undergo lower environmental degradation in winter than in summer. In order to confirm these initial results, a continuous monitoring should be performed especially on those PhACs that either because of an elevated consumption or an intrinsic chemical persistence are poorly degraded during winter months due to low temperatures and solar irradiation. It is especially important to identify which of these specific PhACs are in order to recommend their substitution by equally effective and safe substances but also environmentally friendly.
Show more [+] Less [-]Influence of clay on the adsorption of heavy metals like copper and cadmium on chitosan Full text
2013
Prakash, Nagan | Latha, Srinivasan | Sudha, Persu N. | Renganathan, N Gopalan
The influence of clay on the adsorption of heavy metals like copper and cadmium on chitosan from simulated industrial wastewater is evaluated. Chitosan–clay blend with ratio of (1:1), (1:2), and (2:1) have been prepared, and these were used as membranes to remove copper and cadmium ions from synthetic industrial wastewater. The chemical parameters for quantities of adsorption of heavy metal contamination have been done, and the kinetics of adsorption has also been carried out. Clay provides enough absorbable sites to overcome mass transfer limitations. The number of absorbable sites for cadmium is more compared to copper, and thus the rate of recovery of cadmium is faster than copper, and the percentage removal of cadmium is more than copper at all times on clay over nylon 6. This difference indicates the influence of clay in the adsorption of heavy metals in comparison to synthetic polymer nylon 6. Rate constant for first-order kinetics of adsorption, k ₁, for copper and cadmium is less than that of clay, which clearly indicates that clay, which is a natural polymer, is more kinetically favored compared to synthetic polymer. The difference in the intraparticle diffusion in both the natural and synthetic polymer is not much, and it suggests that the particle diffusion mechanism is the same in both cases. Copper and cadmium recovery is parallel at all times. The percentage of removal of copper increased with an increase in pH from 3 to 5. In the case of cadmium containing wastewater, the maximum removal of metal occurred at pH 5. The uptake amount of Cu²⁺ ions on chitosan increased rapidly with increasing the contact time from 0 to 360 min and then reaches equilibrium after 360 min, and the equilibrium constant for copper and cadmium ions are more or less the same for the adsorption reaction. There are more adsorption sites for cadmium in the presence of clay and mass transfer limitation is avoided without resorting to rotation, which is the highlight of the present work. And more so, this is pronounced in the case of natural polymer compared to synthetic polymer.
Show more [+] Less [-]Solar photocatalytic degradation of mono azo methyl orange and diazo reactive green 19 in single and binary dye solutions: adsorbability vs photodegradation rate Full text
2013
Ong, Soon-An | Min, Ohm-Mar | Ho, Li-Ngee | Wong, Yee-Shian
The objective of this study was to examine the effects of adsorbability and number of sulfonate group on solar photocatalytic degradation of mono azo methyl orange (MO) and diazo Reactive Green 19 (RG19) in single and binary dye solutions. The adsorption capacity of MO and RG19 onto the TiO₂ was 16.9 and 26.8 mg/g, respectively, in single dye solution, and reduced to 5.0 and 23.1 mg/g, respectively, in the binary dye solution. The data obtained for photocatalytic degradation of MO and RG19 in single and binary dye solution were well fitted with the Langmuir–Hinshelwood kinetic model. The pseudo-first-order rate constants of diazo RG19 were significant higher than the mono azo MO either in single or binary dye solutions. The higher number of sulfonate group in RG19 contributed to better adsorption capacity onto the surface of TiO₂ than MO indicating greater photocatalytic degradation rate.
Show more [+] Less [-]Betulinol and wood sterols in sediments contaminated by pulp and paper mill effluents: dissolution and spatial distribution Full text
2013
Ratia, H. | Rämänen, H. | Lensu, A. | Oikari, A.
The goal was to determine dissolution potency of betulinol and wood sterols (WSs) from pulp and paper mill-contaminated sediments and the current stratification for assessment the load due to potential erosion in the river-like watercourse. Both compounds are wood extractives, which may be toxic to benthos and fish. This research continues a study in which other wood extractives, resin acids and their derivative, retene, were analysed. Sediments were collected from 1, 3.5, 12, 15, and 33 km downstream from the pulp and paper mills, and from 2 upstream reference sites. The dissolution potency into sediment–water elutriates (1 + 4 v/v) was studied by two agitation times and temperatures. The vertical amounts of extractives were determined from the uppermost 20 cm of sediment. The amounts of extractives potentially released were estimated from the sediment layers 0–2 and 2–5 cm by using spatial interpolation. According to the interpolation, the total amount of betulinol and β-sitosterol was calculated as kg/ha in the whole sediment area. Significant concentrations of betulinol (1,666 μg/g, dw) and WSs (2,886 μg/g, dw) were measured from the sediments. According spatial interpolation, the highest calculated amount of betulinol (4,726 kg/ha) and that of the most abundant WS, β-sitosterol (3,571 kg/ha), were in the lake where the effluents were discharged. In the dissolution experiment, the highest concentration of betulinol in sediment (0–10 cm) and elutriate was 412 μg/g (dw) and 165 μg/l, respectively. For WSs, concentrations were 768 μg/g (dw) in sediment and 273 μg/l in elutriate. In a worst-case scenario, betulinol may be desorbed to water in concentrations which are hazardous to aquatic animals. Instead WSs are not a risk in this study area. The amount of desorption varied depending on the concentration of contaminants in sediment, the nature of disturbance, and the sediment organic carbon content.
Show more [+] Less [-]Biostimulation of the autochthonous microbial community for the depletion of polychlorinated biphenyls (PCBs) in contaminated sediments Full text
2013
Di Gregorio, Simona | Azaizeh, Hassan | Lorenzi, Roberto
In this study, the effect of the biostimulation of the autochthonous microbial community on the depletion of polychlorinated biphenyls (PCBs) in historically contaminated sediments (6.260 ± 9.3 10⁻³ μg PCB/ g dry weight) has been observed. Biostimulation consisted of (1) the amendment of an electron donor to favor the dehalogenation of the high-chlorinated PCBs and (2) the vegetation of sediments with Sparganium sp. plants to promote the oxidation of the low-chlorinated PCBs by rhizodegradation. The effects of the treatments have been analyzed in terms of both PCB depletion and changes of the autochthonous bacterial community structure. The relative abundance of selected bacterial groups with reference to untreated sediments has been evaluated by quantitative real-time PCR. The amendment of acetate determined the enrichment of anaerobic dechlorinators like Dehalococcoides sp. Vegetation with Sparganium sp. plants determined the enrichment of either (3) the dechlorinators, Dehalococcoides and the Chloroflexi o-17/DF-1 strains or (4) the Acidobacteria, β-Proteobacteria, Actinobacteria, α-Proteobacteria, Bacteroidetes, and Firmicutes. The combination of the two biostimulation strategy determined the 91.5 % of abatement of the initial PCB content.
Show more [+] Less [-]Performance evaluation and application of surface-molecular-imprinted polymer-modified TiO₂ nanotubes for the removal of estrogenic chemicals from secondary effluents Full text
2013
Zhang, Wenlong | Li, Yi | Wang, Qing | Wang, Chao | Wang, Peifang | Mao, Kai
The removal of estrogenic chemicals during wastewater reclamation has been a great concern. Current advanced treatment processes are inefficient for the removal of estrogenic chemicals from secondary effluents of municipal wastewater treatment plants (WWTPs) due to the coexistence of other pollutants with less environmental significance which are also removed simultaneously. The search for highly selective and low-cost removal methods is warranted. Therefore, surface-molecular-imprinted polymer-modified TiO₂ nanotube (S-MIP-TiO₂ NT) photocatalysts were fabricated, characterized, and tested for the removal of estrogenic pollutants from wastewater in this study for the first time. Scanning electron microscopy and Fourier-transform infrared spectroscopy studies showed that the TiO₂ NTs (with an average diameter of 60 nm) were successfully imprinted with functional groups (i.e., carboxyl). The adsorption selectivity and photocatalytic activity of the S-MIP-TiO₂ NTs towards template compound (17β-estradiol, E2) were improved, compared with neat TiO₂ NTs. Interestingly, S-MIP-TiO₂ NTs exhibited higher adsorption intensity and photocatalytic selectivity at low concentrations (from 10 ng/L to 100 μg/L, as normal estrogenic chemical concentrations in secondary effluents) of E2 than that at high concentrations (from 10 to 1,000 mg/L). It was also found that some representative estrogenic chemicals and estrogenic activity could be selectively and rapidly removed from secondary effluents of municipal wastewater treatment plants using S-MIP-TiO₂ NTs as photocatalysts. In addition, S-MIP-TiO₂ NT photocatalysts exhibited excellent regeneration characteristics. Photocatalytic treatment using S-MIP-TiO₂ NTs could be a promising approach for the effective removal of estrogenic chemicals from secondary effluents of municipal WWTPs.
Show more [+] Less [-]Impact of Zn–Pb mining in the Olkusz ore district on the Permian aquifer (SW Poland) Full text
2013
Motyka, Jacek | Postawa, Adam
Long-term extensive mining of Zn–Pb ores in the Olkusz area resulted in significant changes of water table levels and chemical composition of water in all aquifers in this area. Within the Permian aquifer, hydrochemical type of water evolved in two general stages. Short-term effect was freshening in the zones of contact with overlying the Triassic limestones and dolomites. Long-term effect was a change in flow pattern and, as a consequence, an inflow of naturally altered and antropogenically contaminated water from the Triassic aquifer into the Permian complex. This was especially intensive in densely fissured and fault zones. As a result of all these processes, hydrochemical type of water shifted from multi-ion types with various combinations of ions towards higher shares of sulphates, calcium and magnesium.
Show more [+] Less [-]Ion-imprinted polymers for environmental monitoring of inorganic pollutants: synthesis, characterization, and applications Full text
2013
Mafu, Lihle D. | Msagati, Titus A. M. | Mamba, Bhekie B.
Ion imprinting has become one of the fast-growing technologies that have gained a lot of attention recently especially in the area of materials science. One of them is called the ion-imprinted polymers (IIPs). The IIPs are synthesized on the principles of enzyme phenomenon whereby a polymer is altered by a polymerization that takes place in the presence of a template that will be later removed to create cavities that will recognize only the analyte of interest. This specific and selective affinity for the target species decreases the chances of competition with other different types of ions. The imprinting technique started with the discovery of the bulk polymerization method where by the monomer, initiator, crosslinker, and template are mixed together and allowed to polymerize, and then the resulting polymer is ground and sieved to get particles with sizes suitable for the polymer's application. The IIPs have got some attractive qualities for use in environmental applications which include their stability and inexpensiveness and have a wide range of synthesis options with each suiting a certain unique application. Apart from environmental work, IIPs have applications in many other areas such as in membranes, in drug delivery, and in biosensors as alternatives to antibodies just to mention a few. This review focuses on the synthesis, types of imprinting, characterization, and applications of IIPs.
Show more [+] Less [-]Prospects for cultivating white mulberry (Morus alba) in the drawdown zone of the Three Gorges Reservoir, China Full text
2013
Liu, Yun | Willison, J. H Martin
Restoration of vegetation is the most viable management approach for restoring ecological functions in the drawdown zone (hydro-fluctuation belt) of the Three Gorges Reservoir. The selection of plants for this purpose is therefore critically important. Most indigenous plants are not adapted, however, to the counter-seasonal fluctuation of water levels and rapid changes of up to 30 m in water depth that characterize the management of the reservoir. As a result, the reservoir drawdown zone tends to be vegetation deficient. Mulberry (Morus alba L.) has attracted attention as a suitable woody plant for restoring woody vegetation because of its strong adaptation to environmental stresses and the finding that it survives up to 7 m of flooding in parts of the drawdown zone. Comprehensive evaluation of research is therefore required in order to provide guidance for the rational use of mulberry in vegetation restoration strategies for the drawdown zone. Knowledge of the physiology of mulberry adaptation to stress is reviewed here, along with a detailed review of the ecology and agricultural benefits and limitations of mulberry in the context of the Three Gorges Reservoir. It is proposed that a cultivation model for mulberry plants based on ecological principles should be adopted for use within the drawdown zone and that a wider range of biophysical and socio-economic research to develop this model further should be conducted in the future.
Show more [+] Less [-]Uptake and translocation of organophosphates and other emerging contaminants in food and forage crops Full text
2013
Eggen, Trine | Heimstad, Eldbjørg S. | Stuanes, A. O. (Arne O.) | Norli, Hans Ragnar
Emerging contaminants in wastewater and sewage sludge spread on agricultural soil can be transferred to the human food web directly by uptake into food crops or indirectly following uptake into forage crops. This study determined uptake and translocation of the organophosphates tris(1-chloro-2-propyl) phosphate (TCPP) (log Kₒw2.59), triethyl-chloro-phosphate (TCEP) (log Kₒw1.44), tributyl phosphate (TBP) (log Kₒw4.0), the insect repellent N,N-diethyl toluamide (DEET) (log Kₒw2.18) and the plasticiser N-butyl benzenesulfonamide (NBBS) (log Kₒw2.31) in barley, wheat, oilseed rape, meadow fescue and four cultivars of carrot. All species were grown in pots of agricultural soil, freshly amended contaminants in the range of 0.6–1.0 mg/kg dry weight, in the greenhouse. The bioconcentration factors for root (RCF), leaf (LCF) and seed (SCF) were calculated as plant concentration in root, leaf or seed over measured initial soil concentration, both in dry weight. The chlorinated flame retardants (TCEP and TCPP) displayed the highest bioconcentration factors for leaf and seed but did not show the same pattern for all crop species tested. For TCEP, which has been phased out due to toxicity but is still found in sewage sludge and wastewater, LCF was 3.9 in meadow fescue and 42.3 in carrot. For TCPP, which has replaced TCEP in many products and also occurs in higher residual levels in sewage sludge and wastewater, LCF was high for meadow fescue and carrot (25.9 and 17.5, respectively). For the four cultivars of carrot tested, the RCF range for TCPP and TCEP was 10–20 and 1.7–4.6, respectively. TCPP was detected in all three types of seeds tested (SCF, 0.015–0.110). Despite that DEET and NBBS have log Kₒwin same range as TCPP and TCEP, generally lower bioconcentration factors were measured. Based on the high translocation of TCPP and TCEP to leaves, especially TCPP, into meadow fescue (a forage crop for livestock animals), ongoing risk assessments should be conducted to investigate the potential effects of these compounds in the food web.
Show more [+] Less [-]