Refine search
Results 1711-1720 of 1,966
Uptake of microcontaminants by crops irrigated with reclaimed water and groundwater under real field greenhouse conditions Full text
2013
Calderón-Preciado, Diana | Matamoros, Víctor | Savé, Robert | Muñoz, Pere | Biel, Carme | Bayona, J. M.
The use of reclaimed water for agricultural irrigation has emerged as a new strategy for coping with water scarcity in semiarid countries. However, the incorporation of the organic microcontaminants in such water into the diet through crop uptake poses a potential risk to human health. This paper aims to assess the presence of organic microcontaminants in different crops irrigated with groundwater and reclaimed water (secondary or tertiary effluents) in a greenhouse experiment. The determination of microcontaminants in water and vegetation samples was performed by solid-phase extraction and matrix solid-phase dispersion procedure with GC–MS/MS, respectively. The presence of nitrates in the groundwater used for irrigation increased biomass production by a higher proportion than the harvest index. The concentration of microcontaminants in lettuce, carrots, and green beans ranged from less than the limit of quantitation to 571 ng g⁻¹ (fresh weight). Tributyl phosphate and butylated hydroxyanisole exhibited the highest concentration levels in crops. The concentration and frequency of detection of microcontaminants were lower in green bean pods than in green bean roots and leaves. Although the concentrations were generally low, the simultaneous presence of a variety of microcontaminants should be taken into consideration when assessing the risk to human health.
Show more [+] Less [-]Photochemical degradation of ciprofloxacin in UV and UV/H2O2 process: kinetics, parameters, and products Full text
2013
Guo, Hong-Guang | Gao, Nai-Yun | Chu, Wen-Hai | Li, Lei | Zhang, Yong-Ji | Gu, Jin-Shan | Gu, Yu-Liang
Photochemical degradation of fluoroquinolone ciprofloxacin (CIP) in water by UV and UV/H₂O₂ were investigated. The degradation rate of CIP was affected by pH, H₂O₂ dosage, as well as the presence of other inorganic components. The optimized pH value and H₂O₂ concentration were 7.0 and 5 mM. Carbonate and nitrate both impeded CIP degradation. According to liquid chromatography–tandem mass spectrometry analysis, four and 16 products were identified in UV and UV/H₂O₂ system, respectively. Proposed degradation pathways suggest that reactions including the piperazinyl substituent, quinolone moiety, and cyclopropyl group lead to the photochemical degradation of CIP. Toxicity of products assessed by Vibrio qinghaiensis demonstrated that UV/H₂O₂ process was more capable on controlling the toxicity of intermediates in CIP degradation than UV process.
Show more [+] Less [-]Spatial and temporal variations of river nitrogen exports from major basins in China Full text
2013
Ti, Chaopu | Yan, Xiaoyuan
Provincial-level data for population, livestock, land use, economic growth, development of sewage systems, and wastewater treatment rates were used to construct a river nitrogen (N) export model in this paper. Despite uncertainties, our results indicated that river N export to coastal waters increased from 531 to 1,244 kg N km(-2) year(-1) in the Changjiang River basin, 107 to 223 kg N km(-2) year(-1) in the Huanghe River basin, and 412 to 1,219 kg N km(-2) year(-1) in the Zhujiang River basin from 1980 to 2010 as a result of rapid population and economic growth. Significant temporal changes in water N sources showed that as the percentage of runoff from croplands increased, contributions of natural system runoff and rural human and livestock excreta decreased in the three basins from 1980 to 2010. Moreover, the nonpoint source N decreased from 72 to 58 % in the Changjiang River basin, 80 to 67 % in the Huanghe River basin, and 69 to 51 % in the Zhujiang River basin, while the contributions of point sources increased greatly during the same period. Estimated results indicated that the N concentrations in the Changjiang, Huanghe, and Zhujiang rivers during 1980-2004 were higher than those in the St. Lawrence River in Canada and lower than those in the Thames, Donau, Rhine, Seine, and Han rivers during the same period. River N export will reduce by 58, 54, and 57 % for the Changjiang River, Huanghe River, and Zhujiang River in the control scenario in 2050 compared with the basic scenario.
Show more [+] Less [-]Assessment of ozone variations and meteorological influences in a tourist and health resort area on the island of Mali Lošinj (Croatia) Full text
2013
Kovač-Andrić, Elvira | Gvozdić, Vlatka | Herjavić, Glenda | Muharemović, Hasan
The purpose of this study was to investigate ozone, variations, and its correlation with meteorological parameters at a remote location on the Mali Lošinj Island, which has been a tourist and health resort area in the northern Adriatic. The measured data are discussed in relation to the EU guidelines (Directive 2002/3/EC; Directive 2008/50/EC). In order to characterize ambient air with respect to ozone vegetation injury and photochemical pollution, we calculated accumulated dose over a threshold of 40 parts per billion index and two photochemical pollution indicators. The influence of local meteorological parameters on the measured ozone volume fractions was also investigated. We used the multivariate technique principal component analysis to trace correlations between measured ozone concentration and meteorological parameters.
Show more [+] Less [-]Spatial distribution and ecotoxicological risk assessment of heavy metals in surface sediments of the southern Bohai Bay, China Full text
2013
Hu, Bangqi | Li, Guogang | Li, Jun | Bi, Jianqiang | Zhao, Jingtao | Bu, Ruyuan
The concentrations of heavy metals (Cd, Cr, Cu, Ni, Pb, and Zn) and organic carbon in surface sediments, collected from the southern Bohai Bay, were determined to assess the potential contamination and determine the environmental risks associated with heavy metals. Results showed that heavy metal concentrations in the sediments generally met the China Marine Sediment Quality criteria. Both the ecotoxicological index and the potential ecological risk index suggest that the combined ecological risk of the six studied metals may be low, with the highest ecotoxicological potential zones located in the offshore area. The methods of enrichment factor and geoaccumulation index suggested that elevated concentrations of Cd, Cr, and Ni are presented in the region. Multivariate analysis also indicated that the lithogenic factor dominates the distribution of most part of the considered metals in the study area, whereas Cd and Cr are clearly influenced by anthropogenic inputs. The results of this study are likely to be a useful tool to authorities in charge of sustainable marine management.
Show more [+] Less [-]Mechanism of aflatoxin uptake in roots of intact groundnut (Arachis hypogaea L.) seedlings Full text
2013
Snigdha, M. | Hariprasad, P. | Venkateswaran, G.
Aflatoxins are one of the most potent toxic substances that occur naturally, which enter agricultural soils through the growth of aflatoxigenic fungi in rhizhosphere and nonrhizhosphere soils. Though several reports regarding the uptake of aflatoxin by plants are available, the mechanism of aflatoxin uptake remains unknown. This study characterized the aflatoxin uptake mechanism by in vitro hydroponic experiments under variable conditions. The uptake reached saturation after 48 h of incubation for AFB1 and B2 and 60 h for AFG1 and G2. A linear increase in uptake with increasing aflatoxin concentrations was observed, and it fits both linear and nonlinear regression. AFB1 uptake was directly proportional to transpiration rate, and blocking aquaporin activity using mercuric chloride revealed its involvement in the uptake. None of the metabolic inhibitors used to block active transport had any effect on aflatoxin uptake except for sodium azide. From the present study, it could be concluded that aflatoxin uptake by groundnut roots followed mainly a passive way and is facilitated through aquaporins. The involvement of active component should be studied in detail.
Show more [+] Less [-]Removal of Cu, Zn, and Cd from aqueous solutions by the dairy manure-derived biochar Full text
2013
Xu, Xiaoyun | Cao, Xinde | Zhao, Ling | Wang, Hailong | Yu, Hongran | Gao, Bin
PURPOSE: Biochar derived from waste biomass is now gaining much attention for its function as a biosorbent for environmental remediation. The objective of this study was to determine the effectiveness of biochar as a sorbent in removing Cd, Cu, and Zn from aqueous solutions. METHODS: Biochar was produced from dairy manure (DM) at two temperatures: 200°C and 350°C, referred to as DM200 and DM350, respectively. The obtained biochars were then equilibrated with 0–5 mM Cu, Zn or Cd in 0.01 M NaNO₃ solution for 10 h. The changes in solution metal concentrations after sorption were evaluated for sorption capacity using isotherm modeling and chemical speciation Visual MINTEQ modeling, while the solid was collected for species characterization using infrared spectroscopy and X-ray elemental dot mapping techniques. RESULTS: The isotherms of Cu, Zn, and Cd sorption by DM200 were better fitted to Langmuir model, whereas Freundlich model well described the sorption of the three metals by DM350. The DM350 were more effective in sorbing all three metals than DM200 with both biochars had the highest affinity for Cu, followed by Zn and Cd. The maximum sorption capacities of Cu, Zn, and Cd by DM200 were 48.4, 31.6, and 31.9 mg g⁻¹, respectively, and those of Cu, Zn, and Cd by DM350 were 54.4, 32.8, and 51.4 mg g⁻¹, respectively. Sorption of the metals by the biochar was mainly attributed to their precipitation with PO ₄ ³⁻ or CO ₃ ²⁻ originating in biochar, with less to the surface complexation through –OH groups or delocalized π electrons. At the initial metal concentration of 5 mM, 80–100 % of Cu, Zn, and Cd retention by DM200 resulted from the precipitation, with less than 20 % from surface adsorption through phenonic –OH complexation. Among the precipitation, 20–30 % of the precipitation occurred as metal phosphate and 70–80 % as metal carbonate. For DM350, 75–100 % of Cu, Zn, and Cd retention were due to the precipitation, with less than 25 % to surface adsorption through complexation of heavy metal by phenonic –OH site or delocalized π electrons. Among the precipitation, only less than 10 % of the precipitation was present as metal phosphate and more than 90 % as metal carbonate. CONCLUSIONS: Results indicated that dairy manure waste can be converted into value-added biochar as a sorbent for sorption of heavy metals, and the mineral components originated in the biochar play an important role in the biochar's high sorption capacity.
Show more [+] Less [-]Evaluation of the measurement uncertainty in automated long-term sampling of PCDD/PCDFs Full text
2013
Vicaretti, M. | D’Emilia, G. | Mosca, S. | Guerriero, E. | Rotatori, M.
Since the publication of the first version of European standard EN-1948 in 1996, long-term sampling equipment has been improved to a high standard for the sampling and analysis of polychlorodibenzo-p-dioxin (PCDD)/polychlorodibenzofuran (PCDF) emissions from industrial sources. The current automated PCDD/PCDF sampling systems enable to extend the measurement time from 6-8 h to 15-30 days in order to have data values better representative of the real pollutant emission of the plant in the long period. EN-1948:2006 is still the European technical reference standard for the determination of PCDD/PCDF from stationary source emissions. In this paper, a methodology to estimate the measurement uncertainty of long-term automated sampling is presented. The methodology has been tested on a set of high concentration sampling data resulting from a specific experience; it is proposed with the intent that it is to be applied on further similar studies and generalized. A comparison between short-term sampling data resulting from manual and automated parallel measurements has been considered also in order to verify the feasibility and usefulness of automated systems and to establish correlations between results of the two methods to use a manual method for calibration of automatic long-term one. The uncertainty components of the manual method are analyzed, following the requirements of EN-1948-3:2006, allowing to have a preliminary evaluation of the corresponding uncertainty components of the automated system. Then, a comparison between experimental data coming from parallel sampling campaigns carried out in short- and long-term sampling periods is realized. Long-term sampling is more reliable to monitor PCDD/PCDF emissions than occasional short-term sampling. Automated sampling systems can assure very useful emission data both in short and long sampling periods. Despite this, due to the different application of the long-term sampling systems, the automated results could not be directly compared with manual results, not even in terms of measurement uncertainty. This investigation focuses on both uncertainty and repeatability of the automated sampling method. The standard 20988, developed by Internarional Organization of Standardization (ISO) can be used to estimate the measurement uncertainty. The results confirm that the uncertainties of manual and automated methods are comparable. At the same time, it is not appropriate to consider the manual method as a reference for the evaluation of the uncertainty of the automated sampling system, due to the high variability of both systems.
Show more [+] Less [-]Determination of pharmaceuticals, personal care products, and pesticides in surface and treated waters: method development and survey Full text
2013
Caldas, Sergiane Souza | Bolzan, Cátia Marian | Guilherme, Juliana Rocha | Silveira, Maria Angelis Kisner | Escarrone, Ana Laura Venquiaruti | Primel, Ednei Gilberto
Water is fundamental to the existence of life since it is essential to a series of activities, such as agriculture, power generation, and public and industrial supplies. The residual water generated by these activities is released into the environment, reaches the water systems, and becomes a potential risk to nontarget organisms. This paper reports the development and validation of a quantitative method, based on solid-phase extraction and liquid chromatography tandem mass spectrometry, for the simultaneous analysis of 18 pharmaceuticals and personal care products (PPCPs) and 33 pesticides in surface and drinking waters. The accuracy of the method was determined by calculating the recoveries, which ranged from 70 to 120 % for most pesticides and PPCPs, whereas limits of quantification ranged from 0.8 to 40 ng/L. After the validation step, the method was applied to drinking and surface waters. Pesticides and PPCPs were found in concentrations lower than 135.5 ng/L. The evaluation of different water sources with regard to contamination by pesticides and PPCPs has been quite poor in southern Brazil.
Show more [+] Less [-]