Refine search
Results 1731-1740 of 7,921
Phenotypic responses to oil pollution in a poeciliid fish
2021
Santi, Francesco | Vella, Emily | Jeffress, Katherine | Deacon, Amy | Riesch, Rüdiger
Pollution damages ecosystems around the globe and some forms of pollution, like oil pollution, can be either man-made or derived from natural sources. Despite the pervasiveness of oil pollution, certain organisms are able to colonise polluted or toxic environments, yet we only have a limited understanding of how they are affected by it. Here, we analysed phenotypic responses to oil pollution in guppies (Poecilia reticulata) living in oil-polluted habitats across southern Trinidad. We analysed body-shape and life-history traits for 352 individuals from 11 independent populations, six living in oil-polluted environments (including the naturally oil-polluted Pitch Lake), and five stemming from non-polluted habitats. Based on theory of, and previous studies on, responses to environmental stressors, we predicted guppies from oil-polluted waters to have larger heads and shallower bodies, to be smaller, to invest more into reproduction, and to produce more but smaller offspring compared to guppies from non-polluted habitats. Contrary to most of our predictions, we uncovered strong population-specific variation regardless of the presence of oil pollution. Moreover, guppies from oil-polluted habitats were characterised by increased body size; rounder, deeper bodies with increased head size; and increased offspring size, when compared to their counterparts from non-polluted sites. This suggests that guppies in oil-polluted environments are not only subject to the direct negative effects of oil pollution, but might gain some (indirect) benefits from other concomitant environmental factors, such as reduced predation and reduced parasite load. Our results extend our knowledge of organismal responses to oil pollution and highlight the importance of anthropogenic pollution as a source of environmental variation. They also emphasise the understudied ecological heterogeneity of extreme environments.
Show more [+] Less [-]A critical review on human internal exposure of phthalate metabolites and the associated health risks
2021
Huang, Senyuan | Qi, Zenghua | Ma, Shengtao | Li, Guiying | Long, Chaoyang | Yu, Yingxin
Phthalates (PAEs) are popular synthetic chemicals used as plasticizers and solvents for various products, such as polyvinyl chloride or personal care products. Human exposure to PAEs is associated with various diseases, resulting in PAE biomonitoring in humans. Inhalation, dietary ingestion, and dermal absorption are the major human exposure routes. However, estimating the actual exposure dose of PAEs via an external route is difficult. As a result, estimation by internal exposure has become the popular analytical methods to determine the concentrations of phthalate metabolites (mPAEs) in human matrices (such as urine, serum, breast milk, hair, and nails). The various exposure sources and patterns result in different composition profiles of PAEs in biomatrices, which vary from country to country. Nevertheless, the mPAEs of diethyl phthalate (DEP), di-n-butyl phthalate (DnBP), di-iso-butyl phthalate (DiBP), and di-(2-ethylhexyl) phthalate (DEHP) are predominant in the urine. These mPAEs have greater potential health risks for humans. Children have been observed to exhibit higher exposure risks to several mPAEs than adults. Besides age, other influencing factors for phthalate exposure are gender, jobs, and residential areas. Although many studies have reported biological monitoring of PAEs, only a few reviews that adequately summarized the reports are available. The current review appraised available studies on mPAE quantitation in human biomatrices and estimated the dose and health risks of phthalate exposure. While some countries lack biomonitoring data, some countries’ data do not reflect the current PAE exposure. Thence, future studies should involve frequent PAE biomonitoring to accurately estimate human exposure to PAEs, which will contribute to health risk assessments of human exposure to PAEs. Such would aid the formulation of corresponding regulations and restrictions by the government.
Show more [+] Less [-]Iron modification to silicon-rich biochar and alternative water management to decrease arsenic accumulation in rice (Oryza sativa L.)
2021
Kumarathilaka, Prasanna | Bundschuh, Jochen | Seneweera, Saman | Marchuk, Alla | Ok, Yong Sik
Production of rice grains at non-toxic levels of arsenic (As) to meet the demands of an ever-increasing population is a global challenge. There is currently a lack of investigation into integrated approaches for decreasing As levels in rice agro-ecosystems. By examining the integrated iron-modified rice hull biochar (Fe-RBC) and water management approaches on As dynamics in the paddy agro-ecosystem, this study aims to reduce As accumulation in rice grains. The rice cultivar, Ishikari, was grown and irrigated with As-containing water (1 mg L⁻¹ of As(V)), under the following treatments: (1) Fe-RBC-flooded water management, (2) Fe-RBC-intermittent water management, (3) conventional flooded water management, and (4) intermittent water management. Compared to the conventional flooded water management, grain weight per pot and Fe and Si concentrations in the paddy pore water under Fe-RBC-intermittent and Fe-RBC-flooded treatments increased by 24%–39%, 100%–142%, and 93%–184%, respectively. The supplementation of Fe-RBC decreased the As/Fe ratio and the abundance of Fe(III) reducing bacteria (i.e. Bacillus, Clostridium, Geobacter, and Anaeromyxobacter) by 57%–88% and 24%–64%, respectively, in Fe-RBC-flooded and Fe-RBC-intermittent treatments compared to the conventional flooded treatment. Most importantly, Fe-RBC-intermittent treatment significantly (p ≤ 0.05) decreased As accumulation in rice roots, shoots, husks, and unpolished rice grains by 62%, 37%, 79%, and 59%, respectively, compared to the conventional flooded treatment. Overall, integrated Fe-RBC-intermittent treatment could be proposed for As endemic areas to produce rice grains with safer As levels, while sustaining rice yields to meet the demands of growing populations.
Show more [+] Less [-]Impacts of salinization on aquatic communities: Abrupt vs. gradual exposures
2021
Delaune, Kelbi D. | Nesich, David | Goos, Jared M. | Relyea, Rick A.
Increasing chloride concentrations from road salt applications are an emerging threat to freshwater diversity in cold weather regions. Few studies have focused on how road salt affects freshwater biota and even fewer have focused on how the rate of exposure alters organism responses. We hypothesized that road salt concentrations delivered gradually would result in slower population declines and more rapid rebounds due to evolved tolerance. To test this hypothesis, we examined the responses of freshwater lake organisms to four environmentally relevant salt concentrations (100, 230, 860, and 1600 mg Cl⁻/L) that differed in application rate (abrupt vs. gradual). We used outdoor aquatic mesocosms containing zooplankton, filamentous algae, phytoplankton, periphyton, and macroinvertebrates. We found negative effects of road salt on zooplankton and macroinvertebrate abundance, but positive effects on phytoplankton and periphyton, likely resulting from reduced grazing. Only rarely did we detect a difference between abrupt vs gradual salt applications and the directions of those differences were not consistent. This affirms the need for additional research on how road salt pollution entering ecosystems at different frequencies and magnitudes will alter freshwater communities.
Show more [+] Less [-]Modelling chronic toxicokinetics and toxicodynamics of copper in mussels considering ionoregulatory homeostasis and oxidative stress
2021
Le, T.T Yen | Nachev, Milen | Grabner, Daniel | Garcia, Miriam R. | Balsa-Canto, Eva | Hendriks, A Jan | Peijnenburg, Willie J.G.M. | Sures, Bernd
Chronic toxicity of copper (Cu) at sublethal levels is associated with ionoregulatory disturbance and oxidative stress. These factors were considered in a toxicokinetic-toxicodynamic model in the present study. The ionoregulatory disturbance was evaluated by the activity of the Na⁺/K⁺-ATPase enzyme (NKA), while oxidative stress was presented by lipid peroxidation (LPO) and glutathione-S-transferase (GST) activity. NKA activity was related to the binding of Cu²⁺ and Na ⁺ to NKA. LPO and GST activity were linked with the simulated concentration of unbound Cu. The model was calibrated using previously reported data and empirical data generated when zebra mussels were exposed to Cu. The model clearly demonstrated that Cu might inhibit NKA activity by reducing the number of functional pump sites and the limited Cu-bound NKA turnover rate. An ordinary differential equation was used to describe the relationship between the simulated concentration of unbound Cu and LPO/GST activity. Although this method could not explain the fluctuations in these biomarkers during the experiment, the measurements were within the confidence interval of estimations. Model simulation consistently shows non-significant differences in LPO and GST activity at two exposure levels, similar to the empirical observation.
Show more [+] Less [-]Litter contamination at a salt marsh: An ecological niche for biofouling in South Brazil
2021
Pinheiro, Lara M. | Carvalho, Isadora V. | Agostini, Vanessa O. | Martinez-Souza, Gustavo | Galloway, Tamara S. | Pinho, Grasiela L.L.
The presence of solid litter and its consequences for coastal ecosystems is now being investigated around the world. Different types of material can be discarded in areas such as salt marshes, and various fouling organisms can associate with such items forming the Plastisphere. This study investigated the distribution of solid litter along zones (dry, middle, flooded) of a salt marsh environment in the Patos Lagoon Estuary (South Brazil) and the association of biofouling organisms with these items. Solid litter quantities were significantly higher in the dry zone when compared to the middle and flooded zones, showing an accumulation area where the water rarely reaches. Most items were made of plastic, as shown for many other coastal areas, and originated from food packaging, fishery and shipping activities and personal use. Although not statistically significant, there was a tendency of increased biofouling towards the flooded zone. Thirteen groups were found in association with solid litter items, mainly algae, amphipods, and gastropods. The preference for salt marsh zones, types of material and items’ colour was highly variable among groups of organisms, which can be related to their varied physiological requirements. In summary, significant plastic contamination of salt marshes of the Patos Lagoon was associated with a heterogeneous distribution of fouling communities.
Show more [+] Less [-]Toxicity of gabapentin-lactam on the early developmental stage of zebrafish (Danio rerio)
2021
He, Yide | Jia, Dantong | Du, Sen | Zhu, Rongwen | Zhou, Wei | Pan, Shunlong | Zhang, Yongjun
Gabapentin-lactam (GBP-L) is a transformation product (TP) of gabapentin (GBP), a widely used anti-epileptic pharmaceutical. Due to its high persistence, GBP-L has been frequently detected in the surface water. However, the effects of GBP-L on aquatic organisms have not been thoroughly investigated. In the present study, zebrafish (Danio rerio) embryos as a model organism were used to study the impacts of GBP-L in terms of embryos LC₅₀, spontaneous movement at 24 hpf (hours post fertilization), heartbeat rates at 48 hpf, and body length at 72 hpf, with the concentrations of GBP-L down to 0.01 μg/L, covering its environmental concentrations. Various biomarkers from nervous, antioxidant and immune systems of zebrafish larvae were analyzed, including acetylcholinesterase, acetylcholine, dopamine, gamma-aminobutyric acid, superoxide dismutase, catalase, glutathione S-transferase, C reactive protein, and lysozyme, to assess its toxicity on these systems. RT-qPCR was then used to further verify the results and explain the toxicological mechanism at the gene level. The results demonstrated that GBP-L is much more toxic than its parent compound, and could lead to adverse impacts on the aquatic organisms even at every low concentrations.
Show more [+] Less [-]Transport and deposition of microplastic particles in saturated porous media: Co-effects of clay particles and natural organic matter
2021
Li, Meng | Zhang, Xiangwei | Yi, Kexin | He, Lei | Han, Peng | Tong, Meiping
Natural colloids such as clays and natural organic matter (NOM) are universally present in environments, which could interact with microplastics (MPs) and thus alter the fate and transport of MPs in porous media. The co-effects of clays and NOM on MPs transport in saturated porous media were systematically explored at both low and high ionic strength (IS) conditions. Specifically, bentonite and humic acid (HA) were employed as representative clays and NOM. 5 mM NaCl and 1 mM CaCl₂ solutions were used as low IS conditions, while 25 mM NaCl and 5 mM CaCl₂ solutions were employed as high IS conditions. We found that formation of MPs-bentonite heteroaggregates had great effects on MPs transport under different conditions. Without HA, the small MPs-bentonite heteroaggregates formed under low IS increased MPs transport via serving as mobile carriers, while larger MPs-bentonite heteroaggregates formed at high IS led to the decreased MPs mobility. When both HA and bentonite were copresent in MPs suspension, we found that HA could inhibit the formation of larger sized MPs-bentonite heteroaggregates. Particularly, when the two types of natural colloids copresent in MPs suspensions, MPs transport behaviors were similar to those with only bentonite present in MPs suspensions at low IS, while MPs transport was greatly increased at high IS comparing with those only with bentonite in suspensions. Clearly, without HA in suspensions, bentonite played the dominant role on MPs transport under all examined conditions concerned in this study. Instead, when both HA and bentonite copresent in MPs suspensions, MPs transport was mainly controlled by bentonite at low IS, while both bentonite and HA had major contributions at high IS. The results showed that under solution conditions concerned in present study, MPs mobility in porous media would be greatly affected (either enhanced or inhibited) by the two types of natural colloids.
Show more [+] Less [-]Abatement of hazardous materials and biomass waste via pyrolysis and co-pyrolysis for environmental sustainability and circular economy
2021
Chew, Kit Wayne | Chia, Shir Reen | Chia, Wen Yi | Cheah, Wai Yan | Munawaroh, Heli Siti Halimatul | Ong, Wee-Jun
The remarkable journey of progression of mankind has created various impacts in the form of polluted environment, amassed heavy metals and depleting resources. This alarming situation demands sustainable energy resources and approaches to deal with these environmental hazards and power deficit. Pyrolysis and co-pyrolysis address both energy and environmental issues caused by civilization and industrialization. The processes use hazardous waste materials including waste tires, plastic and medical waste, and biomass waste such as livestock waste and agricultural waste as feedstock to produce gas, char and pyrolysis oil for energy production. Usage of hazardous materials as pyrolysis and co-pyrolysis feedstock reduces disposal of harmful substances into environment, reducing occurrence of soil and water pollution, and substituting the non-renewable feedstock, fossil fuels. As compared to combustion, pyrolysis and co-pyrolysis have less emission of air pollutants and act as alternative options to landfill disposal and incineration for hazardous materials and biomass waste. Hence, stabilizing heavy metals and solving the energy and waste management problems. This review discusses the pyrolysis and co-pyrolysis of biomass and harmful wastes to strive towards circular economy and eco-friendly, cleaner energy with minimum waste disposal, reducing negative impact on the planet and creating future possibilities.
Show more [+] Less [-]Innovative mycoremediation technique for treating unsterilized PCDD/F-contaminated field soil and the exploration of chlorinated metabolites
2021
Kaewlaoyoong, Acharee | Chen, Jenq-Renn | Cheng, Chih-Yu | Lin, Chitsan | Cheruiyot, Nicholas Kiprotich | Sriprom, Pongsert
Mycoremediation of unsterilized PCDD/F-contaminated field soil was successfully demonstrated by solid-state fermentation coupled with Pleurotus pulmonarius utilizing a patented incubation approach. The experiments were carried out in four setups with two as controls. The contaminated soil was homogenously mixed with solid inocula, 1:0.5 dry w/w, resulting in an initial concentration of 4432 ± 623 ng WHO-TEQ kg⁻¹. After a 30-day incubation under controlled conditions, the overall removal (approx. 60%) was non-specific. The removal was attributed to degradation by extracellular ligninolytic enzymes and uptake into the fruiting tissue (~110 ng WHO-TEQ kg⁻¹ of mushroom). Furthermore, less recalcitrant chlorinated metabolites were found, implying ether bond cleavage and dechlorination happened during the mycoremediation. These metabolites resulted from the complex interaction between P. pulmonarius and the indigenous microbes from the unsterilized soil. This study provides a new step toward scaling up this mycoremediation technique to treat unsterilized PCDD/F-contaminated field soil.
Show more [+] Less [-]