Refine search
Results 1761-1770 of 1,966
Seasonal and annual dynamics of harmful algae and algal toxins revealed through weekly monitoring at two coastal ocean sites off southern California, USA Full text
2013
Seubert, Erica L. | Gellene, Alyssa G. | Howard, Meredith D. A. | Connell, Paige | Ragan, Matthew | Jones, Burton H. | Runyan, Jennifer | Caron, David A.
Reports of toxic harmful algal blooms (HABs) attributed to the diatom Pseudo-nitzschia spp. have been increasing in California during the last several decades. Whether this increase can be attributed to enhanced awareness and monitoring or to a dramatic upswing in the development of HAB events remains unresolved. Given these uncertainties, the ability to accurately and rapidly identify an emerging HAB event is of high importance. Monitoring of HAB species and other pertinent chemical/physical parameters at two piers in southern California, Newport and Redondo Beach, was used to investigate the development of a site-specific bloom definition for identifying emerging domoic acid (DA) events. Emphasis was given to abundances of the Pseudo-nitzschia seriata size category of Pseudo-nitzschia due to the prevalence of this size class in the region. P. seriata bloom thresholds were established for each location based on deviations from their respective long-term mean abundances, allowing the identification of major and minor blooms. Sixty-five percent of blooms identified at Newport Beach coincided with measurable DA concentrations, while 36 % of blooms at Redondo Beach coincided with measurable DA. Bloom definitions allowed for increased specificity in multiple regression analysis of environmental forcing factors significant to the presence of DA and P. seriata. The strongest relationship identified was between P. seriata abundances 2 weeks following upwelling events at Newport Beach.
Show more [+] Less [-]The use of low-cost adsorbents for wastewater purification in mining industries Full text
2013
Iakovleva, Evgenia | Sillanpää, Mika
Recently, great attention has been paid to the environmental problems in mining industry. At present there are different ways of mineral processing, as well as various methods of wastewater treatment, most of them are expensive. Work is ongoing to find low-cost treatments. In this article, low-cost adsorbents, potentially useful for wastewater treatment on mining and metallurgical plants, are reviewed; their characteristics, advantages, and disadvantages of their application are compared. Also adsorption of different metals and radioactive compounds from acidic environment similar to composition of mining and metallurgical wastewaters is considered.
Show more [+] Less [-]Wet deposition of the seeding agent after weather modification activities Full text
2013
Ćurić, Mladjen | Janc, Dejan
Weather modification activities are performed mostly by cloud seeding. Some operational projects have been conducted for more than a half century and cover planetary scales. These activities have led to large amounts of seeding agents being deposited on the ground in precipitation. The main intent of this paper is to identify the spatial pattern of silver iodide deposits after hail suppression. The spatial pattern of silver iodide deposits is determined using the weather modification project measurements from seeding agent reports, two weather radars and 316 launching sites during a 5-year period. The estimated spatial distribution of the deposits is not uniform, with the maximum silver iodide amount located in the southern part of the study area (up to 140 μg m(-2)). Our results are comparable with the measurements performed by chemical analyses during other cloud seeding experiments. The maximum location coincides well with that of the maximum seeded hailstorm precipitation frequency. A new method for identifying the spatial pattern of wet-deposited material has been established. The location with the maximum amount is found. This method would be important as a means of placing samplers and monitoring at the representative sites because those are where most weather modification projects would be performed in the future.
Show more [+] Less [-]Effects of copper fungicide residues on the microbial function of vineyard soils Full text
2013
Wightwick, Adam M. | Salzman, Scott A. | Reichman, Suzanne M. | Allinson, Graeme | Menzies, Neal W.
The use of copper-based fungicides leads to an accumulation of copper (Cu) in vineyard soils, potentially causing adverse effects to the microbial function and fertility of the soil. This study used a soil microcosm approach to assess the effects of Cu accumulation on microbial function in vineyard soils. Surface soil samples were collected from 10 vineyards and a number of un-impacted reference sites in each of three different viticultural regions of Australia. The field-collected soils were transferred to microcosms and maintained for up to 93 days in the laboratory at 20–22 °C and 60 % of their maximum water-holding capacity. The microbial function of the soils was indicated by measuring phosphomonoesterase, arylsulfatase, urease, and phenol oxidase activities. In general, the vineyard soils had greater concentrations of Cu and lower enzyme activities than in the reference soils, although a weak negative relationship between Cu and enzyme activity could only be found for phosphomonoesterase activity. The results show that soil physical–chemical properties (i.e., organic carbon, pH) are greater determinants of soil enzyme activity than increased soil Cu concentration at the Cu concentrations present in vineyard soils.
Show more [+] Less [-]Immobilization of aluminum with mucilage secreted by root cap and root border cells is related to aluminum resistance in Glycine max L Full text
2013
Cai, Miaozhen | Wang, Ning | Xing, Chenghua | Wang, Fangmei | Wu, Kun | Du, Xing
The root cap and root border cells (RBCs) of most plant species produced pectinaceous mucilage, which can bind metal cations. In order to evaluate the potential role of root mucilage on aluminum (Al) resistance, two soybean cultivars differing in Al resistance were aeroponic cultured, the effects of Al on root mucilage secretion, root growth, contents of mucilage-bound Al and root tip Al, and the capability of mucilage to bind Al were investigated. Increasing Al concentration and exposure time significantly enhanced mucilage excretion from both root caps and RBCs, decreased RBCs viability and relative root elongation except roots exposed to 400 μM Al for 48 h in Al-resistant cultivar. Removal of root mucilage from root tips resulted in a more severe inhibition of root elongation. Of the total Al accumulated in root, mucilage accounted 48-72 and 12-27 %, while root tip accounted 22-52 and 73-88 % in Al-resistant and Al-sensitive cultivars, respectively. A (27)Al nuclear magnetic resonance spectrum of the Al-adsorbed mucilage showed Al tightly bound to mucilage. Higher capacity to exclude Al in Al-resistant soybean cultivar is related to the immobilization and detoxification of Al by the mucilage secreted from root cap and RBCs.
Show more [+] Less [-]Solubility analysis and disposal options of combustion residues from plants grown on contaminated mining area Full text
2013
Kovacs, Helga | Szemmelveisz, Katalin | Palotas, Arpad Bence
Biomass, as a renewable energy source, is an excellent alternative for the partial replacement of fossil fuels in thermal and electric energy production. A new fuel type as biomass for energy utilisation includes ligneous plants with considerable heavy metal content. The combustion process must be controlled during the firing of significant quantities of contaminated biomass grown on brownfield lands. By implementing these measures, air pollution and further soil contamination caused by the disposal of the solid burning residue, the ash, can be prevented. For the test samples from ligneous plants grown on heavy metal-contaminated fields, an ore mine (already closed for 25 years) was chosen. With our focus on the determination of the heavy metal content, we have examined the composition of the soil, the biomass and the combustion by-products (ash, fly ash). Our results confirm that ash resulting from the combustion must be treated as toxic waste and its deposition must take place on hazardous waste disposal sites. Biomass of these characteristics can be burnt in special combustion facility that was equipped with means for the disposal of solid burning residues as well as air pollutants.
Show more [+] Less [-]Validation of the species sensitivity distribution in retrospective risk assessment of herbicides at the river basin scale—the Scheldt river basin case study Full text
2013
Jesenska, Sona | Nemethova, Sabina | Blaha, Ludek
Species sensitivity distribution (SSD) is commonly used in prospective risk assessment to derive predicted no-effect concentrations, toxicity exposure ratios, and environmental quality standards for individual chemicals such as pesticides. The application of SSD in the retrospective risk assessment of chemical mixtures at the river basin scale (i.e., the estimation of "multiple substance potentially affected fractions" [msPAFs]) has been suggested, but detailed critical assessment of such an application is missing. The present study investigated the impact of different data validation approaches in a retrospective model case study focused on seven herbicides monitored at the Scheldt river basin (Belgium) between 1998 and 2009. The study demonstrated the successful application of the SSD approach. Relatively high impacts of herbicides on aquatic primary producers were predicted. Often, up to 40 % of the primary producer communities were affected, as predicted by chronic msPAF, and in some cases, the predicted impacts were even more pronounced. The risks posed by the studied herbicides decreased during the 1998-2009 period, along with decreasing concentrations of highly toxic pesticides such as simazine or isoproturon. Various data validation approaches (the removal of duplicate values and outliers, the testing of different exposure durations and purities of studied herbicides, etc.) substantially affected SSD at the level of individual studied compounds. However, the time-consuming validation procedures had only a minor impact on the outcomes of the retrospective risk assessment of herbicide mixtures at the river basin scale. Selection of the appropriate taxonomic group for SSD calculation and selection of the species-specific endpoint (i.e., the most sensitive or average value per species) were the most critical steps affecting the final risk values predicted. The present validation study provides a methodological basis for the practical use of SSD in the retrospective risk assessment of chemical mixtures.
Show more [+] Less [-]Spatial distribution and mobility of organic carbon (POC and DOC) in a coastal Mediterranean environment (Saronikos Gulf, Greece) during 2007–2009 period Full text
2013
Evangeliou, Nikolaos | Florou, Heleny
Particulate (POC) and dissolved organic carbon (DOC) is an important parameter for the pollution assessment of coastal marine systems, especially those affected by anthropogenic, domestic, and industrial activities. In the present paper, a similar marine system (Saronikos Gulf) located in the west-central Aegean Sea (eastern Mediterranean Sea) was examined, in terms of the temporal and spatial distribution of organic carbon (POC and DOC), with respect to marine sources and pathways. POC was maximum in winter in the Saronikos Gulf, due to the bloom of phytoplankton, whereas in the Elefsis Bay (located in the north side of the Saronikos Gulf) in summer, since phytoplankton grazes in the Bay in the end of summer (except for winter). Approximately 60 % of the bulk DOC of the water column was estimated as non-refractory (labile and semi-labile), due to the major anthropogenic, domestic, and industrial effects of the region and the shallow depths. The spatial distribution of POC and DOC mainly affects the northeastern section of the Gulf, since that region has been accepted major organic discharges for a long time period, in connection to the relatively long renewal times of its waters.
Show more [+] Less [-]Bioaugmentation of polyethylene succinate-contaminated soil with Pseudomonas sp. AKS2 results in increased microbial activity and better polymer degradation Full text
2013
Tribedi, Prosun | Sil, Alok K.
Pseudomonas sp. AKS2 isolated from soil degrades polyethylene succinate (PES) efficiently in the laboratory. However, this organism may not be able to degrade PES with similar efficiency in a natural habitat. Since in situ remediation is preferred for the effective removal of recalcitrant materials like plastic, in the current study, bioaugmentation potential of this organism was investigated. To investigate the potential of the AKS2 strain to bioaugment the PES-contaminated soil, a microcosm-based study was carried out wherein naturally attenuated, biostimulated, and AKS2-inoculated (bioaugmented) soil samples were examined for their ability to degrade PES. The results showed better degradation of PES by bioaugmented soil than other microcosms. Consistent with it, a higher number of PES-degrading organisms were found in the bioaugmented microcosm. The bioaugmented microcosm also exhibited a higher level of average well color development in BiOLOG ECO plate assay than the other two. The corresponding Shannon–Weaver index and Gini coefficient revealed a higher soil microbial diversity of bioaugmented microcosm than the others. This was further supported by community-level physiological profile of three different microcosms wherein we have observed better utilization of different carbon sources by bioaugmented microcosms. Collectively, these results demonstrate that bioaugmentation of PES-contaminated soil with AKS2 not only enhances polymer degradation but also increases microbial diversity. Bioaugmentation of soil with AKS2 enhances PES degradation without causing damage to soil ecology. Thus, Pseudomonas sp. AKS2 has the potential to be implemented as a useful tool for in situ bioremediation of PES.
Show more [+] Less [-]The response of mulberry trees after seedling hardening to summer drought in the hydro-fluctuation belt of Three Gorges Reservoir Areas Full text
2013
Huang, Xiaohui | Liu, Yun | Li, Jiaxing | Xiong, Xingzheng | Chen, Yang | Yin, Xiaohua | Feng, Dalan
Interest has developed in the potential of mulberry (Morus alba), a woody perennial, for revegetating the hydro-fluctuation belt of the Three Gorges Reservoir due to its resistance to water-logging stress. To be useful, the trees must also be able to withstand dry conditions in summer when temperatures can be very high and droughts become severe quickly. Here, we report a study in which mulberry seedlings were grown in a greenhouse under a variety of simulated soil water conditions reflecting potential summer scenarios in the hydro-fluctuation belt of the Three Gorges Reservoir Area. We compared the responses of two pretreatment groups of mulberry seedlings to different levels of drought stress. The pretreatment groups differed with respect to drought hardening: the daily-managed (DM) group had relative soil moisture held constant in the range 70-80 %, while the drought-hardened (DH) group had relative soil moisture held constant at 40-50 %. Following the month-long pretreatment of seedlings, the two groups of young trees (DM and DH) were then respectively subjected to three levels of drought stress for a month: normal watering, moderate drought stress, and severe drought stress. A series of measurements comparing the physiological status of the plants in the two groups were then made, and the following results were obtained: (1) As drought stress increased, the heights, base diameters, root surface areas, photosynthetic rates (Pn), stomatal conductances (Gs), and transpiration rates (Tr) of the mulberry trees in both groups (DM and DH) decreased significantly, while the specific root area and abscisic acid (ABA) contents had increasing trends. Root activity and instantaneous water use efficiency of mulberry trees in both groups (DM and DH) were all raised under drought stress conditions than under normal watering, but the root/shoot ratio and leaf water potential were lowered. (2) At the same level of soil water content, the heights, base diameters, root/shoot ratios, root surface areas, specific root areas, photosynthetic rates (Pn), stomatal conductances (Gs), and transpiration rates (Tr) of the young mulberry trees in the DH were all significantly higher than those of the control group (DM). Leaf water potential, instantaneous water use efficiency, and abscisic acid content of DH were all significantly lower than DM. Under different degrees of drought stress, the growth of mulberry trees will be inhibited, but the trees can respond to the stress by increasing the root absorptive area and enhancing capacity for water retention. Mulberry trees demonstrate strong resistance to drought stress, and furthermore drought resistance can be improved by drought hardening during the seedling stage.
Show more [+] Less [-]