Refine search
Results 1761-1770 of 4,044
Indoor and outdoor particulate matter in primary school classrooms with fan-assisted natural ventilation in Singapore Full text
2016
Chen, Ailu | Gall, Elliott T. | Chang, Victor W. C.
We conducted multiday continuous monitoring of indoor and outdoor particulate matter (PM) in classrooms with fan-assisted natural ventilation (NV) at five primary schools in Singapore. We monitored size-resolved number concentration of PM with diameter 0.3–10 μm at all schools and alveolar deposited surface area concentrations of PM with diameter 0.01–1.0 μm (SA₀.₀₁–₁.₀) at two schools. Results show that, during the monitoring period, schools closer to expressways and in the downtown area had 2–3 times higher outdoor PM₀.₃–₁.₀ number concentrations than schools located in suburban areas. Average indoor SA₀.₀₁–₁.₀ was 115–118 μm² cm⁻³ during periods of occupancy and 72–87 μm² cm⁻³ during unoccupied periods. There were close indoor and outdoor correlations for fine PM during both occupied and unoccupied periods (Pearson’s r = 0.84–1.0) while the correlations for coarse PM were weak during the occupied periods (r = 0.13–0.74). Across all the schools, the size-resolved indoor/outdoor PM ratios (I/O ratios) were 0.81 to 1.58 and 0.61 to 0.95 during occupied and unoccupied periods, respectively, and average infiltration factors were 0.64 to 0.94. Average PM net emission rates, calculated during periods of occupancy in the classrooms, were lower than or in the lower range of emission rates reported in the literature. This study also reveals that indoor fine and submicron PM predominantly come from outdoor sources, while indoor sources associated with occupancy may be important for coarse PM even when the classrooms have high air exchange rates.
Show more [+] Less [-]Molecular perspectives and recent advances in microbial remediation of persistent organic pollutants Full text
2016
Cakrabartī, Jaẏā | Das, Surajit
Nutrition and pollution stress stimulate genetic adaptation in microorganisms and assist in evolution of diverse metabolic pathways for their survival on several complex organic compounds. Persistent organic pollutants (POPs) are highly lipophilic in nature and cause adverse effects to the environment and human health by biomagnification through the food chain. Diverse microorganisms, harboring numerous plasmids and catabolic genes, acclimatize to these environmentally unfavorable conditions by gene duplication, mutational drift, hypermutation, and recombination. Genetic aspects of some major POP catabolic genes such as biphenyl dioxygenase (bph), DDT 2,3-dioxygenase, and angular dioxygenase assist in degradation of biphenyl, organochlorine pesticides, and dioxins/furans, respectively. Microbial metagenome constitutes the largest genetic reservoir with miscellaneous enzymatic activities implicated in degradation. To tap the metabolic potential of microorganisms, recent techniques like sequence and function-based screening and substrate-induced gene expression are proficient in tracing out novel catabolic genes from the entire metagenome for utilization in enhanced biodegradation. The major endeavor of today’s scientific world is to characterize the exact genetic mechanisms of microbes for bioremediation of these toxic compounds by excavating into the uncultured plethora. This review entails the effect of POPs on the environment and involvement of microbial catabolic genes for their removal with the advanced techniques of bioremediation.
Show more [+] Less [-]Glyphosate input modifies microbial community structure in clear and turbid freshwater systems Full text
2016
Pizarro, H. | Vera, M. S. | Vinocur, A. | Pérez, G. | Ferraro, M. | Menéndez Helman, R. J. | dos Santos Afonso, M.
Since it was commercially introduced in 1974, glyphosate has been one of the most commonly used herbicides in agriculture worldwide, and there is growing concern about its adverse effects on the environment. Assuming that glyphosate may increase the organic turbidity of water bodies, we evaluated the effect of a single application of 2.4 ± 0.1 mg l⁻¹ of glyphosate (technical grade) on freshwater bacterioplankton and phytoplankton (pico, micro, and nanophytoplankton) and on the physical and chemical properties of the water. We used outdoor experimental mesocosms under clear and oligotrophic (phytoplanktonic chlorophyll a = 2.04 μg l⁻¹; turbidity = 2.0 NTU) and organic turbid and eutrophic (phytoplanktonic chlorophyll a = 50.3 μg l⁻¹; turbidity = 16.0 NTU) scenarios. Samplings were conducted at the beginning of the experiment and at 1, 8, 19, and 33 days after glyphosate addition. For both typologies, the herbicide affected the abiotic water properties (with a marked increase in total phosphorus), but it did not affect the structure of micro and nanophytoplankton. In clear waters, glyphosate treatment induced a trend toward higher bacteria and picoeukaryotes abundances, while there was a 2 to 2.5-fold increase in picocyanobacteria number. In turbid waters, without picoeukaryotes at the beginning of the experiment, glyphosate decreased bacteria abundance but increased the number of picocyanobacteria, suggesting a direct favorable effect. Moreover, our results show that the impact of the herbicide was observed in microorganisms from both oligo and eutrophic conditions, indicating that the impact would be independent of the trophic status of the water body.
Show more [+] Less [-]Tracking the Historical Traces of Soil Pollution from an Iron-Sintering Plant by Using Magnetic Susceptibility in Wawa, Ontario, Canada Full text
2016
Yurtseven-Sandker, A. | Cioppa, M.T.
This study evaluates the present day effects of air pollutants emitted from an iron sintering plant near Wawa (Ontario, Canada) decades ago (1939–1998). During smelting and refining of iron ore, gaseous sulfur-rich emissions and large amounts of metal-containing (iron oxides) particulate materials were released in to the air, and eventually settled onto vegetation and soil cover. We test the feasibility of using magnetic measurements to investigate and quantify the soil pollution resulting from the sintering plant. Surface and subsurface magnetic susceptibility measurements, as well as various magnetic mineral properties, have been collected in a scheme designed to mimic the previously determined pollutant contamination zones. A total of 50 sites were sampled (with a sampling grid of 250 m) within and around the smelter kill zone to the northwest of Wawa. Results were plotted on cross sections perpendicular (X-X′) and parallel (Y-Y′) to the dominant wind direction in order to investigate magnetic properties of the soil samples as a function of both wind direction and distance from the source. Samples located in Rao and LeBlanc’s (The Bryologist 70:141–17, 1967) pollution zones 1 and 2 typically have κ ᵢₙ₋ₛᵢₜᵤ values >120 × 10⁻⁵ SI, while the zone 3 and 4 results are <100 × 10⁻⁵ SI. Magnetic susceptibility enhancements at depths of 5–10 cm were found to be related to the presence of magnetic spherules (fly-ashes) at sites on the wind-parallel Y-Y′ profile in the previously defined kill zone. An estimated minimum migration rate of iron-rich particulates is calculated for coarse sand and silt/clay sites as 0.24 and 0.1 cm/year, respectively.
Show more [+] Less [-]Removal of Nitrogen by Three Plant Species in Hydroponic Culture: Plant Uptake and Microbial Degradation Full text
2016
Wu, Hailu | Xu, Kaiqin | He, Xiaojuan | Wang, Xinze
Three macrophyte species, Typha augustifolia (T. augustifolia), Phragmites australis (P. australis), and Acorus calamus L. (A. calamus L.), have been grown in hydroponic cultivation systems fed with synthetic wastewater. The experiment was designed as 3 × 2 factorial, with three species and two ratios of NH₄ ⁺/NO₃ ⁻ so as to investigate the nitrogen transformation and nitrogen removal capacity of each species. The nitrogen removal mechanism was further disclosed by comparing biomass production, nitrogen mass balance, and root exudates of the three plant species under different NH₄ ⁺/NO₃ ⁻ ratios. The results indicated there exists a linear relationship, with positive significance (r = 0.946, p < 0.05), between plant biomass and total nitrogen (TN) removal efficiency; in other words, biomass could best reflect plant ability to remove nitrogen. It is also found that NH₄ ⁺/NO₃ ⁻ ratio could influence plant biomass and root exudates significantly. Additionally, the hydrogen donor and source of energy in denitrification happened in this research were mainly organic acids and soluble sugars, accounting for approximately 50 % of the composition in root exudates.
Show more [+] Less [-]Fate of Some Endocrine Disruptors in Batch Experiments Using Activated and Inactivated Sludge Full text
2016
Chiavola, Agostina | Tedesco, Pierpaolo | Boni, Maria Rosaria
The fate of emerging organic micropollutants (EOMs) in wastewater treatment plants (WWTPs) is still not fully determined, and further studies are still needed to assess whether the existing treatment units can be further exploited (e.g., by modifying the operating parameters) or new and different techniques have to be implemented for their removal. The present study investigates the fate of a class of EOMs, i.e., the endocrine disrupting chemicals (EDCs), in batch-activated sludge tests under mixed and aerated conditions, as those usually adopted in full-scale WWTPs. Among the EDCs, the research focused on: bisphenol A, 17α-ethinylestradiol (EE2), and two natural EDCs—estrone (E1) and 17β-estradiol (E2). By applying different operating conditions to the tests, it was possible to distinguish between contributions due to volatilization, adsorption onto the sludge flocs, and biodegradation to the overall removal of each EDC. It was found that all the investigated EDCs were removed mainly by adsorption and biodegradation. Starting from a relatively high concentration (1000 ng/L), the removal process was capable of reducing the influent load to very low values within the duration of the test (i.e., 48 h). Kinetics of the removal process were found to be best fitted by the pseudo-second-order model for all the investigated EDCs; the values of the relative constants were always found to be equal to about 0.0023 1/h. Furthermore, the values of the coefficients K D and K OM were determined and found to be comparable with the data reported by the specialized literature.
Show more [+] Less [-]Effects of benzo[a]pyrene as an environmental pollutant and two natural antioxidants on biomarkers of reproductive dysfunction in male rats Full text
2016
Sheweita, Salah A. | Al-Shora, S. | Hassan, M.
Benzo[a]pyrene (B[a]P) is an environmental toxicant and endocrine disruptor. Therefore, the aim of the present study was to investigate the toxicity of B[a]P in testis of rats and also to study the role of silymarin and thymoquinone (TQ) as natural antioxidants in the alleviation of such toxicity. Data of the present study showed that levels of testosterone, estrogen and progesterone were significantly decreased after treatment of rats with B[a]P. In addition, B[a]P caused downregulation of the expressions of steroidogenic enzymes including CYP17A1 and CP19A1, and decreased the activity of 17-β hydroxysteroid dehydrogenase (17β-HSD). Moreover, B[a]P decreased the activities of antioxidant enzymes including catalase (CAT), glutathione peroxidase (GPX) and superoxide dismutase (SOD), and significantly increased free radicals levels in testis of male rats. However, pretreatment of rats with silymarin prior to administration of B[a]P was found to restore the level of free radicals, antioxidant status, and activities of steroidogenic enzymes to their normal levels in testicular tissues. Moreover, histopathological finding showed that silymarin recovered the abnormalities occurred in tubules caused by B[a] P in testis of rats. On the other hand, TQ showed pro-oxidant effects and did not ameliorate the toxic effects of B[a] P on the testicular tissue since it decreased antioxidant enzymes activities and inhibited the protein expression of CYP11A1 and CYP21A2 compared to control rats. Moreover, TQ decreased the levels of testosterone, estrogen, and progesterone either in the presence or absence of B[a]P. It is concluded that B[a]P decreased testosterone levels, inhibited antioxidant enzymes activities, caused downregulation of CYP isozymes involved in steroidogenesis, and increased free radical levels in testis. Moreover, silymarin was more effective than TQ in restoring organism health and alleviating the deleterious effects caused by B[a]P in the testis of rats. Due to its negative impact, it is highly recommended to limit the use of TQ as a dietary supplement since millions of people in the Middle East are using it to improve their health.
Show more [+] Less [-]Effect of progressive drought stress on growth, leaf gas exchange, and antioxidant production in two maize cultivars Full text
2016
Anjum, Shakeel Ahmad | Tanveer, Mohsin | Ashraf, Umair | Hussain, Saddam | Shahzad, Babar | Khan, Imran | Wang, Longchang
Drought stress is one of the major environmental factors responsible for reduction in crop productivity. In the present study, responses of two maize cultivars (Rung Nong 35 and Dong Dan 80) were examined to explicate the growth, yield, leaf gas exchange, leaf water contents, osmolyte accumulation, membrane lipid peroxidation, and antioxidant activity under progressive drought stress. Maize cultivars were subjected to varying field capacities (FC) viz., well-watered (80 % FC) and drought-stressed (35 % FC) at 45 days after sowing. The effects of drought stress were analyzed at 5, 10, 15, 20, ad 25 days after drought stress (DAS) imposition. Under prolonged drought stress, Rung Nong 35 exhibited higher reduction in growth and yield as compared to Dong Dan 80. Maize cultivar Dong Dan 80 showed higher leaf relative water content (RWC), free proline, and total carbohydrate accumulation than Run Nong 35. Malondialdehyde (MDA) and superoxide anion were increased with prolongation of drought stress, with higher rates in cultivar Run Nong 35 than cultivar Dong Dan 80. Higher production of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) and glutathione reductase (GR) resulted in improved growth and yield in Dong Dan 80. Overall, the cultivar Dong Dan 80 was better able to resist the detrimental effects of progressive drought stress as indicated by better growth and yield due to higher antioxidant enzymes, reduced lipid peroxidation, better accumulation of osmolytes, and maintenance of tissue water contents.
Show more [+] Less [-]Removal of Cd, Cu, Pb, and Zn from aqueous solutions by biochars Full text
2016
Doumer, M. E. | Rigol, A. | Vidal, M. | Mangrich, A. S.
Sorption and desorption of heavy metals (Cd, Cu, Pb, and Zn) was evaluated in biochars derived from sugarcane bagasse (SB), eucalyptus forest residues (CE), castor meal (CM), green coconut pericarp (PC), and water hyacinth (WH) as candidate materials for the treatment of contaminated waters and soils. Solid–liquid distribution coefficients depended strongly on the initial metal concentration, with K d,ₘₐₓ values mostly within the range 10³–10⁴ L kg⁻¹. For all biochars, up to 95 % removal of all the target metals from water was achieved. The WH biochar showed the highest K d,ₘₐₓ values for all the metals, especially Cd and Zn, followed by CE (for Cd and Pb) and PC (for Cd, Pb, and Zn). Sorption data were fitted satisfactorily with Freundlich and linear models (in the latter case, for the low concentration range). The sorption appeared to be controlled by cationic exchange, together with specific surface complexation at low metal concentrations. The low desorption yields, generally less than 5 %, confirmed that the sorption process was largely irreversible and that the biochars could potentially be used in decontamination applications.
Show more [+] Less [-]Mercury in Marine and Oceanic Waters—a Review Full text
2016
Gworek, Barbara | Bemowska-Kałabun, Olga | Kijeńska, Marta | Wrzosek-Jakubowska, Justyna
Mercury contamination in water has been an issue to the environment and human health. In this article, mercury in marine and oceanic waters has been reviewed. In the aquatic environment, mercury occurs in many forms, which depend on the oxidation-reduction conditions. These forms have been briefly described in this article. Mercury concentrations in marine waters in the different parts of the world have been presented. In the relevant literature, two models describing the fate and behavior of mercury in saltwater reservoirs have been presented, a conceptual model which treats all the oceans as one ocean and the “ocean margin” model, providing that the ocean margins manifested themselves as the convergence of continents and oceans, covering such geological features, such as estuaries, inland seas, and the continental shelf. These two conceptual models have been summarized in the text. The mercury content in benthic sediments usually reflects is level in the water reservoir, particularly in reservoirs situated in contaminated areas (mines, metallurgical plants, chemically protected crops). The concentrations of mercury and its compounds determined in the sediments in surface waters in the different parts of the world have been presented. Due to the fact that the pollution caused by mercury is a serious threat for the marine environment, the short paragraph about mercury bioaccumulation in aquatic organisms has been included. The cited data demonstrated a large scatter of mercury contents both between the fish species and the water areas. Mathematical models, valuable tools which provide information about the possible responses of ecosystems, developed to simulate mercury emissions, both at a small scale, for local water reservoirs, and at a global scale, as well as to model mercury bioaccumulation in the chain web of aquatic systems have been described.
Show more [+] Less [-]