Refine search
Results 1761-1770 of 6,560
Exploring plastic-induced satiety in foraging green turtles Full text
2020
Santos, Robson G. | Andrades, Ryan | Demetrio, Guilherme Ramos | Kuwai, Gabriela Miki | Sobral, Mañana Félix | Vieira, Júlia de Souza | Machovsky-Capuska, Gabriel E.
In the last decade many studies have described the ingestion of plastic in marine animals. While most studies were dedicated to understanding the pre-ingestion processes involving decision-making foraging choices based on visual and olfactory cues of animals, our knowledge in the post-ingestion consequences remains limited. Here we proposed a theoretical complementary view of post-ingestion consequences, attempting to connect plastic ingestion with plastic-induced satiety. We analyzed data of plastic ingestion and dietary information of 223 immature green turtles (Chelonia mydas) from tropical Brazilian reefs in order to understand the impacts of plastic ingestion on foraging behavior. Generalized linear mixing models and permutational analysis of variance suggested that plastic accumulations in esophagus, stomach and intestine differed in their impact on green turtle’s food intake. At the initial stages of plastic ingestion, where the plastic still in the stomach, an increase in food intake was observed. The accumulation of plastic in the gastrointestinal tract can reduce food intake likely leading to plastic-induced satiety. Our results also suggest that higher amounts of plastics in the gastrointestinal tract may led to underweight and emaciated turtles. We hope that adopting and refining our proposed framework will help to clarify the post-ingestion consequences of plastic ingestion in wildlife.
Show more [+] Less [-]The association between short-term exposure to ambient air pollution and fractional exhaled nitric oxide level: A systematic review and meta-analysis of panel studies Full text
2020
Chen, Xiaolu | Liu, Feifei | Niu, Zhiping | Mao, Shuyuan | Tang, Hong | Li, Na | Chen, Gongbo | Liu, Suyang | Lu, Yuanan | Xiang, Hao
Several epidemiological studies have evaluated the fractional exhaled nitric oxide (FeNO) of ambient air pollution but the results were controversial. We therefore conducted a systematic review and meta-analysis to investigate the associations between short-term exposure to air pollutants and FeNO level. We searched PubMed and Web of Science and included a total of 27 articles which focused on associations between ambient air pollutants (PM₁₀, PM₂.₅, black carbon (BC), nitrogen dioxide (NO₂), sulfur dioxide (SO₂), ozone (O₃)) exposure and the change of FeNO. Random effect model was used to calculate the percent change of FeNO in association with a 10 or 1 μg/m³ increase in air pollutants exposure concentrations. A 10 μg/m³ increase in short-term PM₁₀, PM₂.₅, NO₂, and SO₂ exposure was associated with a 3.20% (95% confidence interval (95%CI): 1.11%, 5.29%), 2.25% (95%CI: 1.51%, 2.99%),4.90% (95%CI: 1.98%, 7.81%), and 8.28% (95%CI: 3.61%, 12.59%) change in FeNO, respectively. A 1 μg/m³ increase in short-term exposure to BC was associated with 3.42% (95%CI: 1.34%, 5.50%) change in FeNO. The association between short-term exposure to O₃ and FeNO level was insignificant (P>0.05). Future studies are warranted to investigate the effect of multiple pollutants, different sources and composition of air pollutants on airway inflammation.
Show more [+] Less [-]Dosage effects of lincomycin mycelial residues on lincomycin resistance genes and soil microbial communities Full text
2020
Wang, Mengmeng | Liu, Huiling | Dai, Xiaohu
Lincomycin mycelial residues (LMRs) are one kind of byproduct of the pharmaceutical industry. Hydrothermal treatment has been used to dispose of them and land application is an attractive way to reuse the treated LMRs. However, the safe dose for soil amendment remains unclear. In this study, a lab-scale incubation experiment was conducted to investigate the influence of the amendment dosage on lincomycin resistance genes and soil bacterial communities via quantitative PCR and 16S rRNA sequencing. The results showed that introduced lincomycin degraded quickly in soil and became undetectable after 50 days. Degradation rate of the high amendment amount (100 mg kg−1) was almost 4 times faster than that of low amendment amount (10 mg kg−1). Moreover, the introduced LMRs induced the increase of lincomycin resistance genes after incubation for 8 days, and two genes (lmrA and lnuB) showed a dosage-related increase. For example, the abundance of gene lmrA was 17.78, 74.13 and 128.82 copies g−1 soil for lincomycin concentration of 10, 50 and 100 mg kg−1, respectively. However, the abundance of lincomycin resistance genes recovered to the control level as the incubation period extended to 50 days, indicating a low persistence in soil. In addition, LMRs application markedly shifted the bacterial composition and significant difference was found between control soil, 10 mg kg−1 and 50 mg kg−1 lincomycin amended soil. Actually, several genera bacteria were significantly related to the elevation of lincomycin resistance genes. These results provided a comprehensive understanding of the effects of lincomycin dosage on the fate of resistance genes and microbial communities in LMRs applied soil.
Show more [+] Less [-]Extensive solar light harvesting by integrating UPCL C-dots with Sn2Ta2O7/SnO2: Highly efficient photocatalytic degradation toward amoxicillin Full text
2020
Le, Shukun | Yang, Weishan | Chen, Gonglai | Yan, Aoyu | Wang, Xiaojing
The carbon dots (C-dots) mediated Sn₂Ta₂O₇/SnO₂ heterostructures with spongy structure were successfully assembled by simple hydrothermal route. The photocatalytic removal efficiency of amoxicillin (AMX, 20 mg L⁻¹) over C-dots/Sn₂Ta₂O₇/SnO₂ was estimated to reach up 88.3% within 120 min simulated solar light irradiating. Meanwhile, the HPLC-MS/MS analysis and density functional theory (DFT) computation were examined to clarify the photo-degradation pathway of AMX. The mechanism investigation proposed that with the modification of C-dots, the photocatalysts improves the utilization of solar energy by harvesting the long wavelength solar light due to their unique up-converted photoluminescence (UCPL). In addition, the porous spongy structure and plenty of tiny C-dots promote the ability of adsorption by enlarged specific surface area. Furthermore, the C-dots mediated Z-type heterojunction of Sn₂Ta₂O₇/SnO₂ facilitates the efficient separation and transfer of photo-induced carriers. Our work affords a promising approach for the design of the high-efficient photocatalysts to remedy poisonous antibiotics in aqueous environment.
Show more [+] Less [-]Evaluating the protection of bacteria from extreme Cd (II) stress by P-enriched biochar Full text
2020
Chen, Haoming | Tang, Lingyi | Wang, Zhijun | Su, Mu | Tian, Da | Zhang, Lin | Li, Zhen
Cadmium cations (Cd²⁺) are extremely toxic to organisms, which limits the remediation of Cd by microorganisms. This study investigated the feasibility of applying biochar to protect bacteria from extreme Cd²⁺ stress (1000 mg/L). An alkaline biochar (RB) and a slightly acidic biochar (SB) were selected. SB revealed a higher Cd²⁺ removal than RB (15.5% vs. 4.8%) due to its high surface area. Addition of Enterobacter sp. induced formation of Cd phosphate and carbonate on both SB and RB surface. However, Cd²⁺ removal by RB enhanced more evidently than SB (78.9% vs. 30.2%) due to the substantial microbial regulation and surficial alkalinity. Thermogravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS) and geochemical modeling (GWB) all confirmed that the formation of stable Cd phosphate on RB was superior to that in SB. These biomineralization, together with biochar pore structure, protect bacterial cells from Cd stress. Moreover, the alkalinity of biochar promoted the formation of carbonate, which strengthened the decline of Cd²⁺ toxicity. The protection by RB was also confirmed by the intense microbial respiration and biomass (PLFA). Furthermore, this protection induced a positive feedback between P-abundant biochar and Enterobacter sp.: biochar provides P source (the most common limiting nutrient) to support microbial growth; bacteria secrete more organic acids to drive P release. This study therefore elucidated the protection of bacteria by P-enriched biochar based on both physic-chemical and microbial insights.
Show more [+] Less [-]Investigation of the spatially varying relationships of PM2.5 with meteorology, topography, and emissions over China in 2015 by using modified geographically weighted regression Full text
2020
Yang, Qian | Yuan, Qiangqiang | Yue, Linwei | Li, Tongwen
PM₂.₅ pollution is caused by multiple factors and determining how these factors affect PM₂.₅ pollution is important for haze control. In this study, we modified the geographically weighted regression (GWR) model and investigated the relationships between PM₂.₅ and its influencing factors. Experiments covering 368 cities and 9 urban agglomerations were conducted in China in 2015 and more than 20 factors were considered. The modified GWR coefficients (MGCs) were calculated for six variables, including two emission factors (SO₂ and NO₂ concentrations), two meteorological factors (relative humidity and lifted index), and two topographical factors (woodland percentage and elevation). Then the spatial distribution of MGCs was analyzed at city, cluster, and region scales. Results showed that the relationships between PM₂.₅ and the different factors varied with location. SO₂ emission positively affected PM₂.₅, and the impact was the strongest in the Beijing–Tianjin–Hebei (BTH) region. The impact of NO₂ was generally smaller than that of SO₂ and could be important in coastal areas. The impact of meteorological factors on PM₂.₅ was complicated in terms of spatial variations, with relative humidity and lifted index exerting a strong positive impact on PM₂.₅ in Pearl River Delta and Central China, respectively. Woodland percentage mainly influenced PM₂.₅ in regions of or near deserts, and elevation was important in BTH and Sichuan. The findings of this study can improve our understanding of haze formation and provide useful information for policy-making.
Show more [+] Less [-]Occurrence, removal, and environmental risk of phthalates in wastewaters, landfill leachates, and groundwater in Poland Full text
2020
Kotowska, Urszula | Kapelewska, Justyna | Sawczuk, Róża
Phthalates or phthalic acid esters (PAEs) are chemical compounds whose use is exceptionally widespread in everyday materials but, at the same time, have been proven to have harmful effects on living organisms. Effluents from municipal wastewater treatment plants (WWTP) and leachates from municipal solid waste (MSW) landfills are important sources of phthalates with respect to naturally occurring waters. The main aim of this research was determination, mass loads, removal rates and ecological risk assessment of eight phthalates in municipal wastewaters, landfill leachates and groundwater from Polish WWTPs and MSW landfills. Solid-phase microextraction and gas chromatography with mass spectrometry were used for the extraction and determination of analytes. Summed up concentrations of eight phthalates ranged from below LOD to 596 μg/L in influent wastewater with the highest concentration found for bis-2-ethylhexyl phthalate (DEHP) (143 μg/L). The average degree of phthalate removal varies depending on the capacity of a given treatment plant with larger treatment plants coping better than smaller ones. The highest treatment efficiency for all tested treatment plants, over 90%, was reported for dimethyl phthalate (DMP) and diethyl phthalate (DEP). Overall concentrations of phthalates in leachates ranged from below LOD to 303 μg/L while the highest maximum concentration was registered for DEHP (249 μg/L). Overall concentrations of phthalic acid esters in groundwater from upstream monitoring wells ranged from below LOD to 1.8 μg/L and from LOD to 27.9 μg/L in samples from wells downstream of MSW landfills. The obtained data shows that diisobutyl phthalate (DIBP), dibutyl phthalate (DBP), DEHP, and diisononyl phthalate (DINP) pose a high risk for all trophic levels being considered in effluent wastewaters. In the case of groundwater high environmental risk was recorded for DBP and DEHP for all tested trophic levels. Phthalates, in concentrations that pose a high environmental risk, are present in Polish municipal after-treatment wastewater as well as in groundwater under municipal solid waste landfills.
Show more [+] Less [-]Characterization and transcriptomic analysis of a highly Cr(VI)-resistant and -reductive plant-growth-promoting rhizobacterium Stenotrophomonas rhizophila DSM14405T Full text
2020
Gao, Jie | Wu, Shimin | Liu, Ying | Wu, Shanghua | Jiang, Cancan | Li, Xianglong | Wang, Rui | Bai, Zhihui | Zhuang, Guoqiang | Zhuang, Xuliang
Previous research has shown that Stenotrophomonas has the ability to reduce Cr(VI). In this study, we determined whether the reduction capacity of Cr(VI) is conserved in Stenotrophomonas rhizophila DSM14405ᵀ, a plant-growth-promoting rhizobacterium (PGPR). Our results show that S. rhizophila DSM14405ᵀ displays high Cr(VI) resistance at a minimal inhibitory concentration of 1000 mg/L. Furthermore, it completely reduced 50 mg/L Cr(VI) in 28 h at pH 7.5 at 30 °C. The results of X-ray photoelectron spectroscopy and high performance liquid chromatography coupled to inductively coupled plasma mass spectrometry analysis confirmed the ability of S. rhizophila DSM14405ᵀ to convert Cr(VI) to Cr(III), and indicated the adsorption and intracellular accumulation of Cr(III). Transcriptomic analysis revealed that in the presence or absence of Cr(VI), transcriptomes upon short-term exposure showed more differentially expressed genes than those after long-term exposure. GO and KEGG analyses showed that most of the differentially expressed genes were related to Cr(VI) resistance, including genes related to iron homeostasis, central metabolism, DNA repair and anti-oxidative stress, and sulfur metabolism. Highly Cr(VI)-resistant and reductive abilities of this PGPR strain render it a suitable candidate for combined plant-microbe remediation of chromium contaminants from soil.
Show more [+] Less [-]Cadmium source identification in soils and high-risk regions predicted by geographical detector method Full text
2020
Zhao, Yinjun | Deng, Qiyu | Lin, Qing | Zeng, Changyu | Zhong, Cong
Cadmium (Cd) contamination in soils has become a serious and widespread environmental problem, especially in areas with high natural background Cd values, but the mechanism of Cd enrichment in these areas is still unclear. This study uses the Guangxi Zhuang Autonomous Region (Guangxi), a typical area with a high background Cd level and Cd pollution related to mining activities, as an example to explore the source and predict areas with high Cd risk in soils based on the geographical detector method. The areas with high Cd in Guangxi soils were classified into non-mining areas and mining areas according to their potential Cd sources. The results show that the rich Cd content in the soils from the non-mining area of Guangxi was mainly derived from the soil type (q = 0.34), geological age (q = 0.27), rock type (q = 0.26) and geomorphic type (q = 0.20). Specifically, the Cd content was derived from the weathering and deposition processes of carbonatite from the Carboniferous system in the karst area. The high Cd content in the soils of the mining area of Guangxi was mainly derived from the area mined for mineral resources (q = 0.08) and rock type (q = 0.05). Specifically, the Cd content was derived from the mining of lead-zinc ores. The areas in Guangxi with a high risk of Cd soil pollution are mostly concentrated in karst areas, such as Hechi, Laibin, Chongzuo, southern Liuzhou and Baise, northern Nanning city and northeastern Guilin city, and some mining areas. These results indicated that the high Cd concentration in the soils of large areas of Guangxi is probably due to natural sources, while the high Cd concentration around mining areas is due to anthropogenic sources. The results will be useful for soil restoration and locating and controlling contaminated agricultural land.
Show more [+] Less [-]Biotransformation of adsorbed arsenic on iron minerals by coexisting arsenate-reducing and arsenite-oxidizing bacteria Full text
2020
Ye, Li | Wang, Liying | Jing, Chuanyong
Bacteria with arsenate-reducing (ars) and arsenite-oxidizing (aio) genes usually co-exist in aerobic environments, but their contrast impacts on arsenic (As) speciation and mobility remain unclear. To identify which kind of bacteria dominate As speciation under oxic conditions, we studied the biotransformation of adsorbed As on goethite in the co-existence of Pantoea sp. IMH with ars gene and Achromobacter sp. SY8 with aio gene. The incubation results show that SY8 dominated the dissolved As speciation as As(V), even though aio exhibited nearly 5 folds lower transcription levels than ars in IMH. Nevertheless, our XANES results suggest that SY8 showed a negligible effect on solid-bound As speciation whereas IMH reduced adsorbed As(V) to As(III). The change in As speciation on goethite surfaces led to a partial As structural change from bidentate corner-sharing to monodentate corner-sharing as evidenced by our EXFAS analysis. Our Mössbauer spectroscopic results suggest that the incubation with SY8 reduced the degree of crystallinity of goethite, and the reduced crystallinity can be partly compensated by IMH. The changes in As adsorption structure and in goethite crystallinity had a negligible effect on As release. The insights gained from this study improve our understanding of biotransformation of As in aerobic environment.
Show more [+] Less [-]