Refine search
Results 1781-1790 of 7,995
Spatio-temporal variation of microplastic along a rural to urban transition in a tropical river Full text
2021
Chen, Hui Ling | Gibbins, Christopher Neil | Selvam, Sivathass Bannir | Ting, Kang Nee
Microplastic pollution is widely recognised as a global issue, posing risks to natural ecosystems and human health. The combination of rapid industrial and urban development and relatively limited environmental regulation in many tropical countries may increase the amount of microplastic entering rivers, but basic data on contamination levels are lacking. This is especially the case in tropical South East Asian countries. In this paper, the abundance, composition and spatio-temporal variation of microplastic in the Langat River, Malaysia, were assessed, and the relationship between microplastic concentration and river discharge was investigated. Water samples were collected over a 12-month period from 8 sampling sites on the Langat, extending from forested to heavily urbanised and industrial areas. All 508 water samples collected over this period contained microplastic; mean concentration across all sites and times was 4.39 particles/L but extended up to 90.00 particles/L in some urban tributaries. Most microplastics were secondary in origin, and dominated by fibres. Microplastic counts correlated directly with river discharge, and counts increased and decreased in response to changes in flow. A time-integrated assessment of the microplastic load conveyed by the Langat suggested that the river is typically (50 % of the time) delivering around 5 billion particles per day to the ocean. The positive correlation between the concentration of microplastics and suspended sediments in the Langat suggested that continuously logging turbidity sensors could be used to provide better estimates of microplastic loads and improve assessment of human and ecological health risks.
Show more [+] Less [-]Health toxicity effects of brominated flame retardants: From environmental to human exposure Full text
2021
Feiteiro, Joana | Mariana, Melissa | Cairrão, Elisa
Hexabromocyclododecane (HBCD) and Tetrabromobisphenol A (TBBP-A) are brominated flame retardants widely used in variety of industrial and consumer products (e.g., automobiles, electronics, furniture, textiles and plastics) to reduce flammability. HBCD and TBBPA can also contaminate the environment, mainly water, dust, air and soil, from which human exposure occurs. This constant exposure has raised some concerns against human health. These compounds can act as endocrine disruptors, a property that gives them the ability to interfere with hormonal function and quantity, when HBCD and TBBPA bind target tissues in the body. Studies in human and animals suggest a correlation between HBCD and TBBPA exposure and adverse health outcomes, namely thyroid disorders, neurobehavior and development disorders, reproductive health, immunological, oncological and cardiovascular diseases. However, in humans these effects are still poorly understood, once only a few data evaluated the human health effects. Thus, the purpose of this review is to present the toxicity effects of HBCD and TBBPA and how these compounds affect the environment and health, resorting to data and knowledge of 255 published papers from 1979 to 2020.
Show more [+] Less [-]Chronic exposure to MC-LR increases the risks of microcytic anemia: Evidence from human and mice Full text
2021
Pan, Chun | Yan, Minghao | Jin, Haibo | Guo, Hongqian | Han, Xiaodong
Microcystins (MCs) produced by cyanobacteria are potent toxins to humans that cannot be ignored. However, the toxicity of MCs to humans remains largely unknown. The study explored the role of MCs in the development of hematological parameters through human observations and a chronic mouse model to explore related mechanisms. The adjusted odds ratio of MC-LR to the risk of anemia was 4.954 (95 % CI, 2.423–10.131) in a case-control study in Nanjing. An inverse correlation between serum MC-LR and hemoglobin (HGB), hematocrit (HCT), mean corpuscular volume (MCV), and red blood cell count (RBC) was observed. MC-LR in the serum of the population was an independent risk factor for microcytic anemia. Animal experiments demonstrated that MC-LR resulted in microcytic anemia, which is associated with inflammation, dysregulation of iron homeostasis, and erythropoiesis. We first identified the possible signaling pathway of MC-LR-induced anemia that MC-LR significantly upregulated the levels of hepcidin via EPO/EPOR signaling pathway and the decreased levels of Twsg1 and Gdf15, thereby resulting in the decreased levels of Hbb and Fpn, and the increased expression of Fth1, and Tf in a chronic mouse model. Our study first identified that prolonged environmental exposure to MCs probably contribute to the occurrence of microcytic anemia in humans, which provides new insights into the toxicity of MCs for public health.
Show more [+] Less [-]Comprehensive evaluation of ionic liquid [Bmim][PF6] for absorbing toluene and acetone Full text
2021
Ma, Xiaoling | Wang, Wenlong | Sun, Chenggong | Sun, Jing
Absorption is an eminent technology for volatile organic compounds (VOCs) elimination with the merits of high efficiency and low cost. Absorbent plays a critical role in the absorption process, and the thermal stability, saturation capacity, and regeneration performance should be concerned. As a kind of green and eco-friendly solvent, ionic liquid (IL) is expected to be a substitute for the conventional VOCs absorbent. In this study, 1-butyl-3-methylimidazolium hexafluorophosphate ([Bmim][PF₆]) is employed to absorb the modeling VOCs (toluene and acetone). Moreover, the used [Bmim][PF₆] is recovered by thermal distillation and the reusability is then conducted by consecutive batch experiments. Based on that, the thermal stability of [Bmim][PF₆] is comprehensively examined, in which the kinetic and thermodynamic parameters are also calculated. Results reveal that [Bmim][PF₆] owned promising toluene absorption performance with inlet concentration of 3000 mg/m³ and flow rate of 300 mL/min at 20 °C, it possesses the saturated adsorption capacity of 5.16 mg/g. [Bmim][PF₆] also shows satisfying thermal stability up to 610 K. In addition, thermal distillation is proved to be a reliable regeneration route on account of the recovered [Bmim][PF₆] remained satisfying capacity even after five cycles.
Show more [+] Less [-]Identification of (anti-)androgenic activities and risks of sludges from industrial and domestic wastewater treatment plants Full text
2021
Hu, Xinxin | Shi, Wei | Wei, Si | Zhang, Xiaowei | Yu, Hongxia
The annual production of sludges is significant all over the world, and large amounts of sludges have been improperly disposed by random dumping. The contaminants in these sludges may leak into the surrounding soils, surface and groundwater, or be blown into the atmosphere, thereby causing adverse effects to human health. In this study, the (anti-)androgenic activities in organic extracts of sludges produced from both industrial and domestic wastewater treatment plants (WWTPs) were examined using reporter gene assay based on MDA-kb2 cell lines and the potential (anti-)androgenic risks were assessed using hazard index (HI) based on bioassays. Twelve of the 18 samples exhibited androgen receptor (AR) antagonistic activities, with AR antagonistic equivalents ranging from 1.2 × 10² μg flutamide/g sludge to 1.8 × 10⁴ μg flutamide/g sludge; however, no AR agonistic activity was detected in any of the tested samples. These 12 sludges were all from chemical WWTPs; no sludges from domestic WWTPs displayed AR antagonistic activity. Aside from wastewater source, treatment scale and technology could also influence AR antagonistic potencies. The HI values of all the 12 sludges exceeded 1.0, and the highest HI value was above 3.0 × 10³ for children; this indicates that these sludges might cause adverse effects to human health and that children are at a greater risk than adults. The anti-androgenic potencies and risks of the subdivided fractions were also determined, and medium-polar and polar fractions were found to have relatively high detection rates and contribution rates to the AR antagonistic potencies and risks of the raw sample extracts.
Show more [+] Less [-]Octanol-water partition coefficient (logKow) dependent movement and time lagging of polycyclic aromatic hydrocarbons (PAHs) from emission sources to lake sediments: A case study of Taihu Lake, China Full text
2021
Wang, Weiwei | Qu, Xiaolei | Lin, Daohui | Yang, Kun
Understanding the movement of polycyclic aromatic hydrocarbons (PAHs) from emission sources to sediments is important for achieving long-term pollution control of PAHs in sediments. In this study, by exploring the correlation of individual PAHs concentrations (CPAHₛ) in Taihu Lake sediments reported in the past twenty years with their annual emissions (EPAHₛ) in the lake region, it was observed that mean concentrations of PAHs with low logKₒw (i.e., logKₒw≤4.00) in Taihu Lake sediments were correlated best with their emissions without lagging between the sediment sampling time and the PAHs emitting time. However, for PAHs with middle logKₒw (i.e., 4.00<logKₒw≤4.57) or high logKₒw (i.e., logKₒw>4.57), their mean concentrations in sediments were correlated best with the emissions of PAHs emitted 1 or 2 years before the sediment sampling time. The longer lagging time of PAHs with middle or high logKₒw from emission sources to lake sediments could be attributed to their retardation in soils and river sediments around the lake. Moreover, the retardation in soils and river sediments is dependent on PAHs logKₒw and degradation half-life, indicating the dependence of PAHs concentration in sediments on their environmental behaviors, including sorption and degradation. Kₒw dependent movement and the time lagging observed in Taihu Lake for PAHs from emission sources to sediments could be valuable for developing measures to control PAHs, especially for congeners with high logKₒw.
Show more [+] Less [-]Polystyrene particles combined with di-butyl phthalate cause significant decrease in photosynthesis and red lettuce quality Full text
2021
Dong, Youming | Song, Zhengguo | Liu, Yu | Gao, Minling
Microplastics, an emerging pollutant in the environment, have attracted extensive attention in recent years for their possible negative impact on organisms. However, direct and indirect effects of polystyrene (PS) microplastics on vegetables are still not completely known. In this study, we used red lettuce (Lactuca sativa L. Red Sails) in a hydroponic system to investigate the effects of nano- and micro-sized PS and dibutyl phthalate (DBP) on the photosynthesis and red lettuce quality. The results clearly indicated that PS reduced the bioavailability of DBP while causing a decrease in the photosynthetic parameters as well as the total chorophyll content compared to DBP alone by affecting the crystalline structure of the water-soluble chlorophyll protein. Compared with DBP monotherapy, the presence of PS significantly increased hydrogen peroxide and malondialdehyde content in the lettuce treated with DBP, indicating serious oxidative damage. Furthermore, the soluble protein and sugar content in lettuce leaves decreased with higher PS concentration and smaller PS size. It may be due to PS inhibited lettuce root and ribulose-1,5-bisphosphate carboxylase/oxygenase activities. In contrast, nitrite content increased significantly with the induction of the glutathione-ascorbic acid cycle, indicating that the presence of PS reduced the quality of DBP-treated-red lettuce. Additionally, the nano-sized PS greatly inhibited lettuce growth and quality more than the micro-sized PS. This study described the interactions between microplastics and phthalates using molecular simulation and experimental validation to highlight the potential risks of microplastics on vegetable crop production.
Show more [+] Less [-]Assessment of plastic pollution in the Bohai Sea: Abundance, distribution, morphological characteristics and chemical components Full text
2021
Xu, Lili | Cao, Liang | Huang, Wei | Liu, Jinhu | Dou, Shuozeng
Plastics are globally distributed in oceans and can pose a threat to the environment and organisms. In this study, plastic pollution in surface water and sediments of the Bohai Sea was assessed based on plastic abundance, distribution and characteristics (shape, polymer, size and color). Water and sediment samples were collected across the sea using a plankton net (330 μm) and a grab sampler, respectively. The following conclusions were reached. 1) In surface water, large plastics were less abundant (0.14 items/m³) and showed less diverse characteristics than microplastics (0.79 items/m³) but did not significantly differ in spatial distribution. 2) Microplastics in water were more abundant (1.95 items/m³) with more diverse characteristics in Liaodong Bay than in other regions of the sea (0.26–0.59 items/m³). Plastic waste from highly concentrated agricultural, industrial and fishery activities could make large contributions to microplastics in Liaodong Bay. Additionally, low hydrodynamics and long distance to Bohai Strait are unfavorable for diffusion of particles, facilitating the retention of microplastics and increasing the abundance in this bay. 3) Microplastics in sediments were smaller in terms of dominant sizes (<0.5 mm) with less diverse characteristics than particles in water (0.5–1.5 mm). Specifically, fragments, foams and lines dominated among the microplastics in water, whereas fibers and fragments were dominant particles in sediments; alkyd resin, polyethylene, polystyrene and polypropylene (PP) predominated among the particles in water, but rayon, cellulose and PP were dominant particles in sediments. 4) Neither abundance nor size of microplastics in the two media was proportionally correlated and showed low similarity indexes of polymer (0.16), shape (0.29) or color (0.38). This could be related to mismatch in spatiotemporal distributions and variations in the characteristics, fate and behavior of microplastics in the two media. The findings provide knowledge for tracing the sources of plastics in the Bohai Sea.
Show more [+] Less [-]Mediated relationships between multiple metals exposure and fasting blood glucose by reproductive hormones in Chinese men Full text
2021
Zan, Gaohui | Li, Longman | Cheng, Hong | Huang, Lulu | Huang, Sifang | Luo, Xiaoyu | Xiao, Lili | Liu, Chaoqun | Zhang, Haiying | Mo, Zengnan | Yang, Xiaobo
Previous studies have reported metals exposure contribute to the change of fasting blood glucose (FBG) level. However, the roles of reproductive hormones in their associations have not been fully elucidated. The aim of the study is to investigate the associations of multiple serum metals with reproductive hormones, and to further explore potential roles of reproductive hormones in relationships between metals exposure and FBG level. A total of 1911 Chinese Han men were analyzed by a cross-sectional study. We measured serum levels of 22 metals by inductively coupled plasma mass spectrometer (ICP-MS). FBG, total testosterone (TT), estradiol (E2), follicle stimulating hormone (FSH), and sex hormone-binding globulin (SHBG) levels were determined. Least absolute shrinkage and selection operator (LASSO) regression models were conducted to select important metals, and restricted cubic spline models were then used to estimate dose-response relationships between selected metals and reproductive hormones. We also conducted mediation analyses to evaluate whether reproductive hormones played mediating roles in the associations between metals and FBG. We found significant inverse dose-dependent trends of copper, tin and zinc with E2; zinc with SHBG; copper and nickel with TT, while significant positive dose-dependent trend of iron with E2, respectively. Moreover, approximately inverted U-shaped associations existed between lead and SHBG, iron and TT. In addition, E2, SHBG and TT were negatively associated with FBG level. In mediation analyses, the association of copper with FBG was mediated by E2 and TT, with a mediation ratio of 10.4% and 22.1%, respectively. Furthermore, E2 and SHBG mediated the relationship of zinc with FBG, with a mediation ratio of 7.8% and 14.5%, respectively. E2 mediated 11.5% of positive relationship between tin with FBG. Our study suggested that the associations of metals exposure with FBG may be mediated by reproductive hormones.
Show more [+] Less [-]Bioinformatics analysis and quantitative weight of evidence assessment to map the potential mode of actions of bisphenol A Full text
2021
Li, Xiaomeng | Ni, Mengmei | Yang, Zhirui | Chen, Xuxi | Zhang, Lishi | Chen, Jinyao
Bisphenol A (BPA) is a classical chemical contaminant in food, and the mode of action (MOA) of BPA remains unclear, constraining the progress of risk assessment. This study aims to assess the potential MOAs of BPA regarding reproductive/developmental toxicity, neurological toxicity, and proliferative effects on the mammary gland and the prostate potentially related to carcinogenesis by using the Comparative Toxicogenomics Database (CTD)-based bioinformatics analysis and the quantitative weight of evidence (QWOE) approach on the basis of the principles of Toxicity Testing in the 21st Century. The CTD-based bioinformatics analysis results showed that estrogen receptor 1, estrogen receptor 2, mitogen-activated protein kinase (MAPK) 1, MAPK3, BCL2 apoptosis regulator, caspase 3, BAX, androgen receptor, and AKT serine/threonine kinase 1 could be the common target genes, and the apoptotic process, cell proliferation, testosterone biosynthetic process, and estrogen biosynthetic process might be the shared phenotypes for different target organs. In addition, the KEGG pathways of the BPA-induced action might involve the estrogen signaling pathway and pathways in cancer. After the QWOE evaluation, two potential estrogen receptor-related MOAs of BPA-induced testis dysfunction and learning-memory deficit were proposed. However, the confidence and the human relevance of the two MOAs were moderate, prompting studies to improve the MOA-based risk assessment of BPA.
Show more [+] Less [-]