Refine search
Results 1791-1800 of 6,560
Spatial-temporal distribution and transport flux of polycyclic aromatic hydrocarbons in a large hydropower reservoir of Southeast China: Implication for impoundment impacts Full text
2020
Wu, Yuling | Wang, Xinhong | Ya, Miaolei | Li, Yongyu | Liu, Yihao | Chen, Hanzhe
In order to investigate the impacts of dam-related water impoundment on the spatial-temporal variations and transport of anthropogenic organic pollutants, 15 priority polycyclic aromatic hydrocarbons (PAHs) were analyzed in water samples from the Shuikou Reservoir (SKR) of the Minjiang River. The SKR was formed after the construction of the Shuikou Dam, which is the largest hydropower station in Southeast China. The water samples were collected from the backwater zone of the SKR, in both the wet and dry seasons, corresponding to the drainage and impoundment periods of water flow, respectively. The concentrations of the dissolved PAHs in surface water from the wet season (average of 161 ± 97 ng L⁻¹) were significantly higher (ANOVA, p < 0.01) than those from the dry season (average of 43 ± 21 ng L⁻¹). PAH concentrations in the SKR decreased from upstream (industrialized cities) to downstream (rural towns or counties), indicating high PAH loads caused by intensive urbanization effects. The high proportions of 3-ring PAHs in the wet season were from local sources via surface runoff; while the elevated proportions of 4- to 6- ring PAHs in the dry season reflected atmospheric deposition emerged of these PAHs and/or volatilization of 3-ring PAHs enhanced. Molecular diagnostic ratios of PAH isomers in multimedium and principal component analysis indicated that PAH presence in the SKR was mainly attributed to pyrogenic origin. The isomeric ratios of fluoranthene to fluoranthene plus pyrene in the wet season were homogeneous, implying that there were continuous new inputs along the riverine runoff. However, these ratios showed spatial downward trend in the dry season, indicating continued degradation of PAHs occurred along the transport path during the impoundment period. The input and output fluxes of PAHs in the SKR were 5330 kg yr⁻¹ and 2991 kg yr⁻¹, revealing that the reservoir retained contaminants after impoundment of the hydropower dam.
Show more [+] Less [-]Inhibitory effects of polystyrene microplastics on caudal fin regeneration in zebrafish larvae Full text
2020
Gu, Linqi | Tian, Li | Gao, Gan | Peng, Shaohong | Zhang, Jieyu | Wu, Di | Huang, Jing | Hua, Qing | Lu, Tao | Zhong, Li | Fu, Zhengwei | Pan, Xiangliang | Qian, Haifeng | Sun, Liwei
Microplastic pollution is pervasive in aquatic environments, but the potential effects of microplastics on aquatic organisms are still under debate. Given that tissue damage is unavoidable in fish and the available data mostly concentrate on healthy fish, there is a large chance that the ecotoxicological risk of microplastic pollution is underrated. Therefore, in this study, the effects of microplastics on the regenerative capacity of injured fish were investigated using a zebrafish caudal fin regeneration model. After fin amputation at 72 h post fertilization, the larvae were exposed to polystyrene microplastics (0.1–10 mg/L) with diameters of 50 or 500 nm. Microplastic exposure significantly inhibited fin regeneration, both morphologically and functionally. Furthermore, the signaling networks that regulate fin regeneration, as well as reactive oxygen species signaling and the immune response, both of which are essential for tissue repair and regeneration, were altered. Transcriptomic analyses of the regenerating fin confirmed that genes related to fin regeneration were transcriptionally modulated in response to microplastic exposure and that metabolic pathways were also extensively involved. In conclusion, this study demonstrated for the first time that microplastic exposure could disrupt the regenerative capacity of fish and might eventually impair their fitness in the wild.
Show more [+] Less [-]Influence of some physicochemical parameters on the passive sampling of copper (II) from aqueous medium using a polymer inclusion membrane device Full text
2020
González-Albarrán, René | de Gyves, Josefina | Rodríguez de San Miguel, Eduardo
Recently polymer inclusion membranes (PIMs) have been proposed as materials for passive sampling, nonetheless a theoretical base to describe the mass transfer process through those materials, under such conditions of monitoring, has not been elucidated. Under the assumption that: (i) the transport of the metal ion occurs at steady state conditions, (ii) the concentration gradients are linear, and (iii) the kinetics of the chemical reactions in the extraction process on the membrane are elemental; an equation for the passive sampling of copper (II) using a PIM system containing Kelex-100 as carrier is derived. The prediction capacity of this sampler under different conditions of temperature, metal concentration, flow velocity, ionic strength and pH is analyzed as well. Among the dependencies of the PIM on the physicochemical conditions, effects of concentration, temperature and flow velocity tend to increment copper (II) flux across the membrane, being the parameter temperature the one with the most pronounced effect at T ≥ 30 °C. Ionic strength had no great effect on passive sampler response, however the sampler is dependent on the acidity of the medium. The comparable metal ion concentrations estimated from the PIM sampler to those obtained by direct measurements of the sampling medium suggest that PIMs can be robust materials when used as passive sampler devices.
Show more [+] Less [-]Dynamic interactions between soil cadmium and zinc affect cadmium phytoavailability to rice and wheat: Regional investigation and risk modeling Full text
2020
Yang, Yang | Li, Yanling | Chen, Weiping | Wang, Meie | Wang, Tianqi | Dai, Yating
Characterizing the interactions between Cd and Zn with respect to the soil soluble Cd and crop Cd uptake allows the development of risk-based approaches to the performance of grain crops. By means of a three-year survey of 358 rice fields and 206 wheat fields across China, this study investigated the effect of Cd–Zn interactions on the phytoavailability of Cd to rice and wheat. The interactive nature between the Cd:Zn ratio and pH of soil affected crop Cd uptake, and the resulting grain Cd intake risk, were examined by the Free-Ion Activity-based model and probability analysis. In highly acidic rice soils (pH < 5.9), soil Zn had no effect on rice Cd uptake, whereas, under near-neutral conditions (pH > 5.9), a site-specific influence of soil Zn on grain Cd concentration was found. Soil Zn could inhibit Cd uptake and translocation by the plant in soil-wheat system when the soil Cd:Zn ratio decreased to 0.0083 and lower. Rice grain poses a significant health risk to local consumers due to its high Cd accumulation and its low Zn accumulation. In order to reduce the health risks from dietary Cd to local consumers, approximately 63.9% of the rice fields and 30.5% of the wheat fields require strategies ameliorating soil acidity in rice soils and increasing Zn concentrations in wheat soils.
Show more [+] Less [-]Air pollution episodes during the COVID-19 outbreak in the Beijing–Tianjin–Hebei region of China: An insight into the transport pathways and source distribution Full text
2020
Zhao, Na | Wang, Gang | Li, Guohao | Lang, Jianlei | Zhang, Hanyu
Although anthropogenic emissions decreased, polluted days still occurred in the Beijing–Tianjin–Hebei (BTH) region during the initial outbreak of the coronavirus disease (COVID-19). Analysis of the characteristics and source distribution of large-scale air pollution episodes during the COVID-19 outbreak (from 23 January to April 8, 2020) in the BTH region is helpful for exploring the efficacy of control measures and policy making. The results indicated that the BTH region suffered two large-scale air pollution episodes (23–28 January and 8–13 February), which were characterized by elevated PM₂.₅, SO₂, NO₂, and CO concentrations, while the O₃ concentration decreased by 1.5%–33.9% (except in Shijiazhuang, where it increased by 16.6% during the second episode). These large-scale air pollution episodes were dominated by unfavorable meteorological conditions comprising a low wind speed and increased relative humidity. The transport pathways and source distribution were explored using the Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT), potential source contribution function (PSCF), and concentration weighted trajectory (CWT) models. The air pollution in the BTH region was mainly affected by local emission sources during the first episode, which contributed 51.6%–60.6% of the total trajectories in the BTH region with a PM₂.₅ concentration ranging from 146.2 μg/m³ to 196.7 μg/m³. The short-distance air masses from the southern and southwestern areas of the BTH region were the main transport pathways of airflow arriving in the BTH region during the second episode. These contributed 51.9%–57.9% of the total trajectories and originated in Hebei, Henan, central Shanxi, and Shaanxi provinces, which were the areas contributing the most to the PM₂.₅ level and exhibited the highest PSCF and CWT values. Therefore, on the basis of local emission reduction, enhancing regional environmental cooperation and implementing a united prevention and control of air pollution are effective mitigation measures for the BTH region.
Show more [+] Less [-]Microplastics impair digestive performance but show little effects on antioxidant activity in mussels under low pH conditions Full text
2020
Wang, Xinghuo | Huang, Wei | Wei, Shuaishuai | Shang, Yueyong | Gu, Huaxin | Wu, Fangzhu | Lan, Zhaohui | Hu, Menghong | Shi, Huahong | Wang, Youji
In the marine environment, microplastic contamination and acidification may occur simultaneously, this study evaluated the effects of ocean acidification and microplastics on oxidative stress responses and digestive enzymes in mussels. The thick shell mussels Mytilus coruscus were exposed to four concentrations of polystyrene microspheres (diameter 2 μm, 0, 10, 10⁴ and 10⁶ particles/L) under two pH levels (7.7 and 8.1) for 14 days followed by a 7-day recovery acclimation. Throughout the experiment, we found that microplastics and ocean acidification exerted little oxidative stress to the digestive gland. Only catalase (CAT) and glutathione (GSH) showed a significant increase along with increased microplastics during the experiment, but recovered to the control levels once these stressors were removed. No significant effects of pH and microplastics on glutathione peroxidase (GPx) and superoxide dismutase (SOD) were observed. The responses of digestive enzymes to both stressors were more pronounced than antioxidant enzymes. During the experiment, pepsin (PES), trypsin (TRS), alpha-amylase (AMS) and lipase (LPS) were significantly inhibited under microplastics exposure and this inhibition was aggravated by acidification conditions. Only PES and AMS tended to recover during the recovery period. Lysozyme (LZM) increased significantly under microplastic exposure conditions, but acidification did not exacerbate this effect. Therefore, combined stress of microplastics and ocean acidification slightly impacts oxidative responses but significantly inhibits digestive enzymes in mussels.
Show more [+] Less [-]In ovo very early-in-life exposure to diesel exhaust induced cardiopulmonary toxicity in a hatchling chick model Full text
2020
Jiang, Qixiao | Xu, Xiaohui | Zhang, Chao | Luo, Jing | Lv, Na | Shi, Limei | Ji, Andong | Gao, Mengyu | Chen, Feilong | Cui, Lianhua | Zheng, Yuxin
Diesel exhaust (DE) had been associated with cardiopulmonary toxicity and developmental toxicity. However, neonatal very early-in-life exposure had not been extensively studied previously. To investigate the potential effects of neonatal very early-in-life exposure to DE, a brand-new chicken embryo in ovo exposure model had been established, with which the cardiopulmonary effects of DE exposure via air cell infusion at embryonic day 18/19 (ED18/19) were assessed in hatchling chicks post-hatch 0-, 1-, or 2-weeks. Heart rates were assessed with electrocardiography. Cardiac and pulmonary morphologies were investigated with histopathological methods. Cardiopulmonary effects were explored with immunohistochemistry for alpha smooth muscle actin (alpha-SMA). In further investigations, the expression levels of phosphorylated AhR, serum levels of TGF-β1, phosphorylated SMAD2/3 and phosphorylated p38MAPK were assessed in the lung tissues. Significantly elevated heart rates, increased right ventricular wall thickness and cardiac collagen deposition were observed in the hearts of exposed hatchling chicks. Significantly increased collagen deposition as well as increased vascular alpha-SMA layer thickness/decreased cavity area were observed in exposed animal lungs. These effects persisted up to two weeks post-hatch. Mechanistic studies revealed elevated phosphorylated AhR expression levels in 0-week and 1-week chicken lungs, while phosphorylated SMAD2/3 levels significantly increased in 0-week chicken lungs but decreased in 2-week chicken lungs following DE exposure. Phosphorylation of p38MAPK did not remarkably increase until 2-week post-hatch. In summary, the novel chicken neonatal very early-in-life exposure model effectively exposed the chicken embryos during the neonatal initial breathing, resulting in cardiopulmonary toxicity, which is associated with AHR, TGF-β1 and MAPK signaling.
Show more [+] Less [-]Potential sources, influencing factors, and health risks of polycyclic aromatic hydrocarbons (PAHs) in the surface soil of urban parks in Beijing, China Full text
2020
Qu, Yajing | Gong, Yiwei | Ma, Jin | Wei, Haiying | Liu, Jiyuan | Liu, Lingling | Wu, Haiwen | Yang, Shuhui | Chen, Yixiang
Urban parks are an important part of the urban ecological environment. The environmental quality of parks is related to human health. To evaluate sources of polycyclic aromatic hydrocarbons (PAHs) in soils of urban parks and their possible health risks, soil samples from 122 parks in Beijing, China, were collected and analyzed. The total content of 16 PAHs between 0.066 and 6.867 mg/kg. Four-ring PAHs were predominant, followed by 5-ring PAHs, while the fraction of 2-ring PAHs was the lowest. The dominant PAHs sources were found to be coal combustion and oil fuels such as gasoline and diesel. A conditional inference tree (CIT) was used to identify the key influencing factors for PAHs. Traffic emissions was the most important factor, followed by coal consumption, as well as the history and location of the park. Incremental lifetime cancer risk (ILCR) for urban park soil in Beijing were low under normal conditions. The soil PAHs exposure pathway risk for both children and adults decreased in the following order: ingestion > dermal contact > inhalation. The risk from soil in parks to children’s health is slightly higher than that of adults, although the health risk due to exposure to PAHs was not extraordinary. Ecosystem risk was negligible.
Show more [+] Less [-]Potassium regulates the growth and toxin biosynthesis of Microcystis aeruginosa Full text
2020
He, Yixin | Ma, Jianrong | Joseph, Vanderwall | Wei, Yanyan | Liu, Mengzi | Zhang, Zhaoxue | Li, Guo | He, Qiang | Li, Hong
Potassium (K⁺) is the most abundant cation in phytoplankton cells, but its impact on Microcystis aeruginosa (M. aeruginosa) has not been fully documented. This study presents evidence of how K⁺ availability affects the growth, oxidative stress and microcystin (MC) production of M. aeruginosa. The iTRAQ-based proteomic analysis revealed that during K⁺ deficiency, serious oxidative damage occurred and the photosynthesis-associated and ABC transporter-related proteins in M. aeruginosa were substantially downregulated. In the absence of K⁺, a 69.26% reduction in cell density was shown, and both the photosynthesis and iron uptake were depressed, which triggered a declined production of ATP and expression of MC synthetases genes (mcyA, B and D), and MC exporters (mcyH). Through the impairment of both the MC biosynthesis and MC transportation out of cells, K⁺ depletion caused an 85.89% reduction of extracellular MC content at the end of the study. However, with increasing in the available K⁺ concentrations, photosynthesis efficiency, the expression of ABC-transporter proteins, and the transcription of mcy genes displayed slight differences compared with those in the control group. This work represents evidence that K⁺ availability can regulate the physiological metabolic activity of M. aeruginosa and K⁺ deficiency leads to depressed growth and MC production in M. aeruginosa.
Show more [+] Less [-]Spatial distribution of heavy metal contamination in mollisol dairy farm Full text
2020
Qi, Zheng | Gao, Xi | Qi, Yue | Li, Jinlong
To accurately visualize the spatial distribution of heavy metal pollution and provide basic information on soil remediation in dairy farm, Geographic Information System (GIS) is used for optimization of sample collection and data analysis. Based on GIS technology, dairy manure, 10 cm-depth surface soil, 50 cm-depth sub soil, and surface water samples were collected from dairy farm in Dulbert Mongolian Autonomous County, Daqing City, Heilongjiang Province in China. The spatial distribution and assessment of heavy metals were performed by using GIS inverse distance weighted interpolation and pollution index method. The single factor pollution index value of As element in the soil was found to indicate the class of extreme contamination, whereas Ni in both surface water inside and outside the farm, and Sb in the cow drinking water were assigned to the level of moderate contamination. The comprehensive pollution index implied serious contamination for soil samples, slight contamination for water samples and safety for manure samples, respectively. Comprehensive score for heavy metal elements followed the orders of As>Zn>Cr>Ni>Cu>Pb>Cd>Hg. The horizontal pollution that mainly occurred in the middle and east regions was increased from north to south, and west to east district. Historically, the dairy farm belonged to heavily polluted saline-alkali soil, where the heavy metals might enter the food chain through transportation from soil to water, the cows, and eventually to the milk and human body. Visualizing spatial distribution of heavy metal contamination by using GIS technology will be of significance to provide useful information for soil remediation of dairy farm.
Show more [+] Less [-]