Refine search
Results 1791-1800 of 7,921
A new method of predicting the contribution of TGM to Hg in white rice: Using leaf THg and implications for Hg risk control in Wanshan Hg mine area
2021
Chang, Chuanyu | Yin, Runsheng | Huang, Fang | Wang, Ruirui | Chen, Chongying | Mao, Gang | Feng, Xinbin | Zhang, Hua
Rice plants accumulate Hg from the soil and ambient air, however, evaluating the contribution of Hg from these two sources remains challenging. Here, we proposed a practical method to predict the contribution of total gaseous mercury (TGM) to Hg in white rice in Wanshan Hg mine area (WMM). In this study, rice was planted in the same low-Hg soil at different sites of WMM with varying TGM levels. Comparing to the control sites at IG (Institute of Geochemistry, Guiyang), TGM is the dominant source of Hg in rice leaves and white rice at TB (Tianba) and ZJW (Zhangjiawan) sites of WMM. Subsequently, a good correlation between the Hg concentrations in rice leaves and the concentration contributions of TGM to Hg in white rice was obtained. Such a correlation enabled feasible quantification of the contribution of TGM to Hg in white rice collected from the Wanshan Hg mine. The contribution of TGM to Hg in white rice across the WMM area was also estimated, demonstrating that white rice receives 14–83% of Hg from the air. Considering the high contribution of TGM to Hg in white rice, we compared the relative health risks of Hg via inhalation and rice consumption and found that inhalation, rather than rice consumption, was the major pathway for bioaccessible Hg exposure in adults at high-TGM sites. This study provides new knowledge of Hg biogeochemistry in Hg-mining areas.
Show more [+] Less [-]Efficient removal of estrogenic compounds in water by MnIII-activated peroxymonosulfate: Mechanisms and application in sewage treatment plant water
2021
Jia, Daqing | Li, Qinzhi | Hanna, Khalil | Mailhot, Gilles | Brigante, Marcello
In this paper, the degradation of three endocrine-disrupting chemicals (EDCs): bisphenol A (BPA), 17β-estradiol (E2) and 17α-ethinylestradiol (EE2) by manganite (γ-MnOOH) activated peroxymonosulfate (PMS) was investigated. Preliminary optimisation experiments showed that complete degradation of the three EDCs was achieved after 30 min of reaction using 0.1 g L⁻¹ of γ-MnOOH and 2 mM of PMS. The degradation rate constants were determined to be 0.20, 0.22 and 0.15 min⁻¹ for BPA, E2 and EE2, respectively. Combining radical scavenging approaches, Electron paramagnetic resonance (EPR) and X-ray photoelectron spectroscopy (XPS) analyses, we revealed for the first time that about 40% of EDCs degradation can be attributed to heterogeneous electron transfer reaction involving freshly generated Mn(IV), and 60% to sulfate radical degradation pathway. The influence of various inorganic ions on the γ-MnOOH/PMS system indicated that removal efficiency was slightly affected by chloride and carbonate ions, while nitrate and nitrite ions had negligible impacts. The application of γ-MnOOH/PMS system in real sewage treatment plant water (STPW) showed that degradation rate constants of EDCs decreased to 0.035–0.048 min⁻¹ and complete degradation of the three EDCs after 45 min. This study provides new insights into the reactivity of combined γ-MnOOH and PMS, and opens new ways for the application of Mn-bearing species in wastewater treatment technologies.
Show more [+] Less [-]Heavy metals in different moss species in alpine ecosystems of Mountain Gongga, China: Geochemical characteristics and controlling factors
2021
Xiao, Jun | Han, Xiaoxiao | Sun, Shouqin | Wang, Lingqing | Rinklebe, Jörg
Terrestrial mosses are promising tracers for research concerning metal atmospheric deposition and pollution. Concentrations of Cr, Co, Ni, Zn, Sr, Cd, Ba, and Pb in different moss species from Mountain Gongga, China were analyzed to investigate the effects of growth substrates, geographic elevation, and type of moss species on the accumulation characteristics of heavy metals, as well as to identify heavy metal sources. The ability of heavy metals to accumulate in moss varied significantly, with low concentrations of Cd and Co; medium concentrations of Cr, Ni, and Pb; and high concentrations of Zn, Sr, and Ba. Elevation significantly influenced the accumulation characteristics of heavy metals, with high concentrations found at lower elevations due to proximal pollution. Growth substrate and moss species were found to have certain influence on the bioconcentration capacities of heavy metals in moss in this study. Correlation analysis showed similar sources for Sr, Zn, and Ba, as well as for Ni, Co, and Cr. The positive matrix factorization (PMF) model was consistent with atmospheric deposition of Pb and Cd; substrate sources of Cr, Co, and Ni; and anthropogenic sources of Ba, Sr, and Zn. This research characterized the accumulation characteristics of heavy metals and their influence factors in different mosses found in alpine ecosystems and provides a reference for future studies in similar areas.
Show more [+] Less [-]Consumption of field-realistic doses of a widely used mito-toxic fungicide reduces thorax mass but does not negatively impact flight capacities of the honey bee (Apis mellifera)
2021
Glass, Jordan R. | Fisher, Adrian | Fewell, Jennifer H. | DeGrandi-Hoffman, Gloria | Ozturk, Cahit | Harrison, Jon F.
Commercial beekeepers in many locations are experiencing increased annual colony losses of honey bees (Apis mellifera), but the causes, including the role of agrochemicals in colony losses, remain unclear. In this study, we investigated the effects of chronic consumption of pollen containing a widely-used fungicide (Pristine®), known to inhibit bee mitochondria in vitro, which has recently been shown to reduce honey bee worker lifespan when field-colonies are provided with pollen containing field-realistic levels of Pristine®. We fed field colonies pollen with a field-realistic concentration of Pristine® (2.3 ppm) and a concentration two orders of magnitude higher (230 ppm). To challenge flight behavior and elicit near-maximal metabolic rate, we measured flight quality and metabolic rates of bees in two lower-than-normal air densities. Chronic consumption of 230 but not 2.3 ppm Pristine® reduced maximal flight performance and metabolic rates, suggesting that the observed decrease in lifespans of workers reared on field-realistic doses of Pristine®-laced pollen is not due to inhibition of flight muscle mitochondria. However, consumption of either the 230 or 2.3 ppm dose reduced thorax mass (but not body mass), providing the first evidence of morphological effects of Pristine®, and supporting the hypothesis that Pristine® reduces forager longevity by negatively impacting digestive or nutritional processes.
Show more [+] Less [-]Plasticizers and bisphenol A: Emerging organic pollutants along the lower stretch of River Ganga, north-east coast of the Bay of Bengal
2021
Mukhopadhyay, Moitraiyee | Chakraborty, Paromita
Hooghly River (HR), the other name used for the lower stretch of River Ganga, is a prime freshwater source in the eastern part of India. However HR has been evidenced with a variety of emerging organic pollutants (EOPs) in the recent past. Given the extensive use of plasticizers and additive in plastic products, we have investigated seven plasticizers and bisphenol A (BPA) in the surface and storm-water of HR up to the tip of the Bay of Bengal. Further using a previously published sediment data we have estimated the fluxes for the aforementioned EOPs. Surface water and storm-water concentrations of seven plasticizers varied between 92.62 and 770 ng/L (176.1 ± 104.8; Avg ± SD) and 120.9–781.5 ng/L (355.2 ± 232.5), respectively. BPA varied between 43 and 8800 ng/L (658.3 ng/L ± 1760) and 117.9–2147 ng/L (459.3 ± 620.2) in surface and storm-water, respectively. With the increase in salinity, a decreasing trend for bis-(2-ethylhexyl) phthalate (DEHP) was evidenced. However, concentration of BPA increased with the increase in salinity. Significant and strong correlation between DEHP and BPA (R² = 0.6; p < 0.01) in the suburban corridor might have resulted from sludge disposal of the scrap recycling activities. Using site-specific principal component analysis, unregulated disposal of plastic waste, particularly from such industrial belts and tourist spots were identified as the possible point sources for plasticizers and BPA in this region. Net diffusive flux based on fugacity fraction showed a trend depending on the pollutant’s aqueous solubility and partition coefficient. However, transfer tendency from water to sediment was noticed in the sites having point source. Estimated ecotoxicological risk posed by BPA was higher for edible fishes and for lower order organisms, PAEs was the major contributor.
Show more [+] Less [-]Dissolved organic nitrogen in wastewater treatment processes: Transformation, biosynthesis and ecological impacts
2021
Zheng, Fang | Wang, Jie | Xiao, Rui | Chai, Wenbo | Xing, Defeng | Lu, Huijie
With the upgrade of wastewater treatment plants (WWTPs) to meet more stringent discharge limits for nutrients, dissolved organic nitrogen (DON) is present at an increasing percentage (up to 85%) in the effluent. Discharged DON is of great environmental concern due to its potentials in stimulating algal growth and forming toxic nitrogenous disinfection by-products (N-DBPs). This article systematically reviewed the characteristics, transformation and ecological impacts of wastewater DON. Proteins, amino acids and humic substances are the abundant DON compounds, but a large fraction (nearly 50%) of DON remains uncharacterized. Biological treatment processes play a dominant role in DON transformation (65–90%), where DON serves as both nutrient and energy sources. Despite of the above progress, critical knowledge gaps remain in DON functional duality, relationship with dissolved inorganic nitrogen (DIN) species, and coupling/decoupling with the dissolved organic carbon (DOC) pool. Development of more rapid and accurate quantification methods, modeling transformation processes, and assessing DON-associated eutrophication and N-DBP formation risks should be given priority in further investigations.
Show more [+] Less [-]The need to investigate continuums of plastic particle diversity, brackish environments and trophic transfer to assess the risk of micro and nanoplastics on aquatic organisms
2021
Latchere, Oïhana | Audroin, Thybaud | Hétier, Jean | Métais, Isabelle | Châtel, Amélie
Plastic particles are ubiquitous in marine and freshwater environments. While many studies have focused on the toxicity of microplastics (MPs) and nanoplastics (NPs) in aquatic environments there is no clear conclusion on their environmental risk, which can be attributed to a lack of standardization of protocols for in situ sampling, laboratory experiments and analyzes. There are also far more studies concerning marine environments than fresh or brackish waters despite their role in the transfer of plastics from continents to oceansWe systematically reviewed the literature for studies: (1) using plastics representative of those found in the environment in laboratory experiments, (2) on the contamination of plastic particles in the continuum between fresh and marine waters, focusing in particular on estuaries and (3) on the continuum of contamination of plastic particles between species through trophic transfer in aquatic environments. We found that the exposure of aquatic organisms in the laboratory to plastic particles collected in the environment are very scarce. Moreover, plastic exposures of estuarine species in the laboratory are generally carried out for a single salinity and a single temperature that do not reflect the fluctuating environmental conditions of estuaries. Finally, the trophic transfer of plastic particles is mainly studied in the laboratory through simple food chains which are not representative of the complexity of the trophic networks observed in the aquatic environment. We pointed out that future studies in the laboratory should include both MPs and NPs sampled in the environment and focus on the precise characterization of the composition and surface of these plastics as well as on their absorbed pollutants, additives or biofilms. Moreover, investigations must be continued concerning the toxicity of plastic particles in brackish water environments such as estuaries and the trophic transfer of plastic particles in complex food chains.
Show more [+] Less [-]Simultaneous photocatalytic reduction of hexavalent chromium and oxidation of p-cresol over AgO decorated on fibrous silica zirconia
2021
Aziz, F.F.A. | Jalil, A.A. | Hassan, N.S. | Fauzi, A.A. | Azami, M.S.
The co-existence of heavy metals and organic compounds including Cr(VI) and p-cresol (pC) in water environment becoming a challenge in the treatment processes. Herein, the synchronous photocatalytic reduction of Cr(VI) and oxidation of pC by silver oxide decorated on fibrous silica zirconia (AgO/FSZr) was reported. In this study, the catalysts were successfully developed using microemulsion and electrochemical techniques with various AgO loading (1, 5 and 10 wt%) and presented as 1, 5 and 10-AgO/FSZr. Catalytic activity was tested towards simultaneous photoredox of hexavalent chromium and p-cresol (Cr(VI)/pC) and was ranked as followed: 5-AgO/FSZr (96/78%) > 10-AgO/FSZr (87/61%) > 1-AgO/FSZr (47/24%) > FSZr (34/20%). The highest photocatalytic activity of 5-AgO/FSZr was established due to the strong interaction between FSZr and AgO and the lowest band gap energy, which resulted in less electron-hole recombination and further enhanced the photoredox activity. Cr(VI) ions act as a bridge between the positive charge of catalyst and cationic pC in pH 1 solution which can improve the photocatalytic reduction and oxidation of Cr(VI) and pC, respectively. The scavenger experiments further confirmed that the photogenerated electrons (e⁻) act as the main species for Cr(VI) to be reduced to Cr(III) while holes (h⁺) and hydroxyl radicals are domain for photooxidation of pC. The 5-AgO/FSZr was stable after 5 cycles of reaction, suggesting its potential for removal of Cr(VI) and pC simultaneously in the chemical industries.
Show more [+] Less [-]Long-term effects of atmospheric deposition on British plant species richness
2021
Tipping, Edward | Davies, Jessica A.C. | Henrys, Peter A. | Jarvis, Susan G. | Smart, S. M. (Simon M.)
The effects of atmospheric pollution on plant species richness (nₛₚ) are of widespread concern. We carried out a modelling exercise to estimate how nₛₚ in British semi-natural ecosystems responded to atmospheric deposition of nitrogen (Ndₑₚ) and sulphur (Sdₑₚ) between 1800 and 2010. We derived a simple four-parameter equation relating nₛₚ to measured soil pH, and to net primary productivity (NPP), calculated with the N14CP ecosystem model. Parameters were estimated from a large data set (n = 1156) of species richness in four vegetation classes, unimproved grassland, dwarf shrub heath, peatland, and broadleaved woodland, obtained in 2007. The equation performed reasonably well in comparisons with independent observations of nₛₚ. We used the equation, in combination with modelled estimates of NPP (from N14CP) and soil pH (from the CHUM-AM hydrochemical model), to calculate changes in average nₛₚ over time at seven sites across Britain, assuming that variations in nₛₚ were due only to variations in atmospheric deposition. At two of the sites, two vegetation classes were present, making a total of nine site/vegetation combinations. In four cases, nₛₚ was affected about equally by pH and NPP, while in another four the effect of pH was dominant. The ninth site, a chalk grassland, was affected only by NPP, since soil pH was assumed constant. Our analysis suggests that the combination of increased NPP, due to fertilization by Ndₑₚ, and decreased soil pH, primarily due to Sdₑₚ, caused an average species loss of 39% (range 23–100%) between 1800 and the late 20th Century. The modelling suggests that in recent years nₛₚ has begun to increase, almost entirely due to reductions in Sdₑₚ and consequent increases in soil pH, but there are also indications of recent slight recovery from the eutrophying effects of Ndₑₚ.
Show more [+] Less [-]Emerging organic compounds in European groundwater
2021
Bunting, S.Y. | Lapworth, D.J. | Crane, E.J. | Grima-Olmedo, J. | Koroša, A. | Kuczyńska, A. | Mali, N. | Rosenqvist, L. | van Vliet, M.E. | Togola, A. | López, B.
In Europe, emerging organic compounds (EOCs) in groundwater is a growing research area. Prioritisation for monitoring EOCs in Europe was formalised in 2019 through the development of the first voluntary groundwater watch list (GWWL). Despite this, groundwater occurrence data in the peer reviewed literature for Europe has not been reviewed to date. Questions surrounding the effect, toxicity, movement in the subsurface and unsaturated zone make the process of regulating EOC use difficult. The aim in Europe is to develop a unified strategy for the classification, and prioritisation of EOCs to be monitored in groundwater. This paper compiles evidence from the recent published studies from across Europe, since 2012, when the last major literature global review of EOCs in groundwater took place. A total of 39 studies were identified for review based on specific selection criteria (geography, publication date, sample size>10, inclusion of EOCs data). Data on specific compounds, and associated meta-data, are compiled and reviewed. The two most frequently detected EOCs, carbamazepine and caffeine, occurred in groundwater at concentrations of up to 2.3 and 14.8 μg/L, respectively.The most frequently reported category of compounds were ‘Pharmaceuticals’; a highly studied group with 135 compounds identified within 31 of the 39 studies. In Europe, the majority of reviewed studies (23) were at a regional scale, looking specifically at EOCs in a specific city or aquifer. The use of analytical methods is not uniform across Europe, and this inevitably influences the current assessment of EOCs in groundwater. A correlation between the number of compounds analysed for, and the number detected in groundwater highlights the need for further studies, especially larger-scale studies throughout Europe. For the development of EU and national regulation, further work is required to understand the occurrence and impacts of EOCs in groundwater throughout Europe and elsewhere.
Show more [+] Less [-]