Refine search
Results 1801-1810 of 6,548
Effects of phosphorus availability and phosphorus utilization behavior of Microcystis aeruginosa on its adaptation capability to ultraviolet radiation Full text
2020
Ren, Lingxiao | Wang, Peifang | Wang, Chao | Paerl, Hans W. | Wang, Huiya
Phosphorus (P) plays a critical role in eutrophication and algal growth; therefore, improving our understanding of the impact of P is essential to control harmful algal blooms. In this study, Microcystis aeruginosa was treated with 5-h ambient irradiation in the medium with different dissolved inorganic P (DIP) concentrations, DIP-free, moderate-DIP, and high-DIP, to explore its growth and other physiological responses. Compared to photosynthetically active radiation (PAR), UV-A (320–400 nm) and UV-B (280–320 nm) radiation had inhibitive effects on the photosynthesis and growth of M. aeruginosa, while high P availability could alleviate or eliminate the negative effects of UV radiation. The photosynthetic parameters had a minimum reduction and quickly recovered after re-inoculation under high-DIP conditions. Confirmed by SEM, photosynthetic pigments, the generation of reactive oxygen species (ROS), superoxide dismutase (SOD) activity and other methods, ambient UV radiation exerted oxidative stresses rather than direct lethal effects on M. aeruginosa. Photosynthetic parameters indicated that algal UV-adaptation processes could include decreasing photo-induced damages and increasing self-repair efficiency. The P acquired by M. aeruginosa cells can have two function, which included alleviating UV-induced negative effects and sustaining algal growth. Consequently, UV-adaptation processes of M. aeruginosa resulted in an elevated demand for DIP, which resulted to increased P uptake rates and cellular P quota under moderate and high-DIP conditions. Therefore, the production of carotenoid and phycocyanin, and SOD activity increased under UV stress, leading to a better adaptation capability of M. aeruginosa and decreased negative effects of UV radiation on its growth. Overall, our findings demonstrated the significant interactive effects of P enrichment and irradiation on typical cyanobacteria, and the strong adaptation capability of M. aeruginosa in the eutrophic UV-radiated waters.
Show more [+] Less [-]The effects of wet wipe pollution on the Asian clam, Corbicula fluminea (Mollusca: Bivalvia) in the River Thames, London Full text
2020
McCoy, K.A. | Hodgson, D.J. | Clark, P.F. | Morritt, D.
The aim of the present study was to evaluate “flushable” and “non-flushable” wet wipes as a source of plastic pollution in the River Thames at Hammersmith, London and the impacts they have on the invasive Asian clam, Corbicula fluminea, in this watercourse. Surveys were conducted to assess whether the density of wet wipes along the foreshore upstream of Hammersmith Bridge affected the distribution of C. fluminea. High densities of wet wipes were associated with low numbers of clams and vice versa. The maximum wet wipe density recorded was 143 wipes m⁻² and maximum clam density 151 individuals m⁻². Clams adjacent to the wet wipe reefs were found to contain synthetic polymers including polypropylene (57%), polyethylene (9%), polyallomer (8%), nylon (8%) and polyester (3%). Some of these polymers may have originated from the wet wipe reefs.
Show more [+] Less [-]A Cd/Zn Co-hyperaccumulator and Pb accumulator, Sedum alfredii, is of high Cu tolerance Full text
2020
Xv, Lingling | Ge, Jun | Tian, Shengke | Wang, Haixin | Yu, Haiyue | Zhao, Jianqi | Lu, Lingli
High sensitivity towards Cu toxicity is problematic when using some hyperaccumulator plants for phytoremediation of soils with mixed contamination of Cu. Sedum alfredii, a Cd/Zn co-hyperaccumulator and Pb accumulator, is widely used for remediation of Cd, Zn, and Pb co-contaminated soils in China. In this paper, the tolerance and accumulation ability of S. alfredii towards Cu stress and its potential for phytoremediation of multi-metal polluted soils have been studied. Both the hyperaccumulating ecotype (HE) and non-hyperaccumulating ecotype (NHE) of S. alfredii accumulated high Cu in the roots and translocated minimal Cu to the shoots, and Cu in the stems and leaves mostly restricted in the vascular tissues (phloem zone). The HE plants, however, exhibited high Cu resistance with stimulated lateral root growth and increased chlorophyll content under 10 μM Cu treatment. XANES analysis showed that Cu in HE roots comprised Cu²⁺ (46.7%), Cu-histidine (35.2%) and Cu-cell wall (18.1%). The NHE under Cu stress showed decreased biomass, reduced leaf chlorophyll content, altered root architecture, and higher Cu localized to root cell wall as compared with the HEs. Potted HE plants thrived six months in multi-metal contaminated soils including 3897 mg kg⁻¹ available Cu. In conclusion, HE S alfredii is highly tolerant toward Cu due to metal homeostasis in root cells. Therefore, this plant has great potential to remediate Zn, Cd, and Pb contaminated soils those also contain high levels of Cu.
Show more [+] Less [-]Distribution characteristics and policy-related improvements of PM2.5 and its components in six Chinese cities Full text
2020
Wang, Qiong | Fang, Jianlong | Shi, Wanying | Dong, Xiaoyan
This study presents the distribution characteristics and possible sources of fine particulate matter (PM₂.₅) and its components, as well as policy-related pollution reduction in the Chinese cities of Jinan, Shijiazhuang (SJZ), Chengdu, Wuxi, Wuhan, and Harbin (HRB). PM₂.₅ samples were collected using mid-volume samplers during the autumn of 2017 in all six cities. The samples were analyzed to determine the ambient PM₂.₅ compositions, including the concentrations of water-soluble inorganic ions (WSIIs), carbonaceous aerosols, and elements concentrations. The chemical ratios of organic carbon to elemental carbon and nitrate to sulfate as well as the enrichment factors of elements were calculated to establish the possible sources of PM₂.₅ in all six cities. The highest PM₂.₅ concentration was 152 μg/m³ in SJZ, while the lowest concentration was 47 μg/m³ in HRB. During the sampling period in these six cities, the PM₂.₅ concentrations exceeded the World Health Organization recommended daily average air quality guidelines by 2.4–6.1 times, and WSIIs, carbonaceous aerosols, and elements accounted for 31.8%–61.6%, 9.8%–35.1%, and 0.9%–2.5% of the PM₂.₅, respectively. In 2013, the Chinese government formulated the Air Pollution Prevention and Control Action Plan (APPCAP) for controlling air pollution, and effective measures have been implemented since then. Compared with previous studies conducted during 2009–2013 before the implementation of the APPCAP, the concentrations of PM₂.₅ and most of its components decreased to varying degrees, and large changes in the chemical ratios of PM₂.₅ components were observed. These results indicate that PM₂.₅ sources vary among these six cities and that China has improved the ambient air quality in these cities through the implementation of air pollution control policies. The APPCAP have achieved considerable results in continuously reducing pollution concentrations, although the air pollution concentrations observed in this study remain high compared with those of other countries.
Show more [+] Less [-]A novel lncRNA, loc107985872, promotes lung adenocarcinoma progression via the notch1 signaling pathway with exposure to traffic-originated PM2.5 organic extract Full text
2020
Guo, Huaqi | Feng, Yan | Yu, Hengyi | Xie, Yichun | Luo, Fei | Wang, Yan
PM2.5 pollution is an important and urgent problem in China that can increase mortality and hospital admissions. Traffic-originated PM2.5 organic component (tPo) mainly contains polycyclic aromatic hydrocarbons (PAHs). Research has shown that PAHs can promote invasion, metastasis, and cancer stem cell properties in lung adenocarcinoma cells, but the exact toxicological mechanism is unknown. In the present study, we investigated the effect of lncRNAs on the progression of lung adenocarcinoma induced by tPo and the underlying mechanisms mediated by lncRNA-signaling pathway interactions. We found that chronic tPo treatment upregulated the expression of loc107985872, which further promoted cell invasion and migration, EMT and cancer stem cell properties via notch1 pathway in lung adenocarcinoma cells. Meanwhile, activation of the notch1 signaling pathway through loc107985872 might be associated with abnormally high expression of its upstream proteins, such as ADAM17, PSEN1 and DLL1. Moreover, tPo exposure induced EMT and the acquisition of cancer stem cell-like properties via the notch1 signaling pathway in vivo. In summary, loc107985872 upregulated by tPo promoted lung adenocarcinoma progression via the notch1 signaling pathway.
Show more [+] Less [-]Lead distribution in urban street dust and the relationship with mining, gross domestic product GDP and transportation and health risk assessment Full text
2020
Chang, Xuan | Li, Ying-Xia
Lead (Pb) is an important pollutant and it is of significance to explore the Pb distribution, influencing factors and health risk. Pb concentration and mass load per unit area in 385 street dust samples collected from 19 cities in China were determined during 2011-2013. The results show that the Pb concentration are 68.8, 105.4, 41.7, 49.7, 75.6, 81.7, 131.9, 67.5, 109.3, 164.1, 74.8, 66.4, 99.8, 58.4, 114.0, 59.6, 103.7, 55.4 and 80.4 for Beijing, Chengdu, Daqing, Harbin, Jilin, Jinan, Kunming, Lanzhou, Luoyang, Panzhihua, Qingdao, Yinchuan, Guangzhou, Tangshan, Xi’an, Guangyuan, Nanjing, Taiyuan and Tianjin, respectively. The Pb pollution level of urban street dust varies among cities in the range of 1.72–5.56 times higher than soil background values. The allometric function can fit the change in Pb concentration with particle size well. The medium-sized (38–120 μm) particles contributed 60.2%–80.4% to the Pb load and should be highlighted when selecting street dust management techniques. Influenced by the distribution of Pb ore, the Pb concentration of urban street dust in China shows obvious regional differences, with value in the south 112% higher than that in the north. Among all kinds of mining types, metal-related mining activities discharge a large amount of Pb dust in the process of crushing and smelting, thus contributing most to the Pb load. The Pb load was also affected by transportation. The relationship between Pb load and gross domestic product (GDP) was described with the environmental Kuznets curve (EKC) model, which indicated that the Pb emissions of most cities were still increasing. Finally, the human health risk assessment model with adjusted parameters showed that the Pb risk of all cities was below the threshold. Despite all this, given the EKC law of Pb emission, long-term follow-up assessments are needed.
Show more [+] Less [-]Biotransformation of the herbicide nicosulfuron residues in soil and seven sulfonylurea herbicides by Bacillus subtilis YB1: A climate chamber study Full text
2020
Zhang, Zhe | Yang, Dongchen | Si, Helong | Wang, Jiaying | Parales, Rebecca E. | Zhang, Jinlin
Bacillus subtilis YB1 is a strain that can efficiently transform nicosulfuron. In order to study its remediation ability and effects on other microorganisms in the soil, indoor biological remediation experiments and rhizosphere microbial diversity analysis were performed. B. subtilis YB1 granules were prepared and applied to the nicosulfuron contaminated soil. The concentration of nicosulfuron was detected by ultra-performance liquid chromatography-mass spectrometry (UPLC-MS) and changes in the physiological indicators of wheat were measured. At the same time, the changes in the rhizosphere soil microbial diversity were determined by 16S RNA sequencing. Results showed that the YB1 granules made a contribution to the transformation of nicosulfuron (0.05 mg kg⁻¹) in the soil within 55 days. The physiological indicators of wheat also showed consistent result about nicosulfuron transformation. Rhizosphere soil microbial diversity results indicated the relative abundance of Firmicutes decreased (3.0%–0.35%) and Acidobacteria first decreased (25.82%–22.38%) and then increased (22.3%–26.1%) with nicosulfuron added (N group). The relative abundance of Acidobacteria first decreased (25.8%–15.3%) and then increased (15.3%–21.7%) while Proteobacteria increased (26.5%–38.08%). At the same time, Firmicutes first increased (2.6%–12.3%) and then decreased to original level (12.3%–0.7%) in the N group with YB1 granules (NYB1 group). Members of the genus Bacillus initially increased and then decreased to the original level as the Control group, therefore, they did not become dominant in the rhizosphere soil. Alpha diversity analyses showed no obvious differences in species diversity among the N, NYB1 and Control groups. So YB1 did not have obvious influence on the rhizosphere microbial community structure during nicosulfuron transformation, which only had some effect on species abundance. This study revealed the successful indoor bioremediation of nicosulfuron in the soil, providing a potential strategy for solving the problem of nicosulfuron contamination.
Show more [+] Less [-]The influence of organic carbon on the toxicity of sediment-associated dinonylnaphthalene sulfonic acids to the benthic invertebrates Tubifex tubifex and Hyalella azteca Full text
2020
Matten, K.J. | Bartlett, A.J. | Milani, D. | Gillis, P.L. | Parrott, J.L. | Toito, J. | Balakrishnan, V.K. | Prosser, R.S.
Naphthalene sulfonic acids (NSAs) are used extensively in industrial applications as dispersants in dyes, rubbers, and pesticides, and as anti-corrosive agents in coatings, gels, and sealants. This study examined the toxicity of three NSA congeners, barium dinonylnaphthalene sulfonate (BaDNS), calcium dinonylnaphthalene sulfonate (CaDNS), and dinonylnaphthalene disulfonic acid (DNDS), to two benthic species, Tubifex tubifex and Hyalella azteca. Two substrates with different levels of organic carbon (sediment [2%] and sand [0%]) were used in toxicity tests. Juvenile production was the most sensitive endpoint for T. tubifex: the 28-d EC50s were <18.2, 22.2, and 64.0 μg/g dw in sand and 281.3, 361.6, and 218.9 μg/g dw in sediment for BaDNS, CaDNS, and DNDS, respectively. The 28-d LC50s for H. azteca were similar among compounds: 115.3, 82.1, and 49.0 μg/g dry weight (dw) in sand, and 627.3, 757.9, and >188.5 μg/g dw in sediment, for BaDNS, CaDNS, and DNDS, respectively. However, when LC50s were estimated based on concentrations of NSAs measured in overlying water (which can be an important route of exposure for H. azteca), BaDNS and CaDNS were 3–4 orders of magnitude more toxic than DNDS. The NSAs examined were >3-fold more toxic when present in substrates with no organic carbon (e.g., sand) for all H. azteca endpoints where LC/EC50s could be calculated and for sublethal endpoints for T. tubifex. The organic carbon content of the sediment appears to have acted as a sink and reduced NSA toxicity by decreasing bioavailability. Environmental sediment samples were collected from 12 river sites across southern Ontario. The maximum concentration of CaDNS observed in sediment collected from this region was 2.8 μg/g dw in sediment with 2% organic carbon; 100-fold lower than the lowest EC10 in the current study.
Show more [+] Less [-]Bourgeoning impact of the technology critical elements in the marine environment Full text
2020
Bu-Olayan, A.H. | Thomas, B.V.
Contamination of the Technology Critical Elements (TCE) through e-wastes and beach plastic wastes are some of the attributes to the recent rise in marine pollution. A generalized study of pollutants in the marine waters showed no evidence of the effect of TCE. However, an in-depth study revealed the mean TCE concentrations in the sequence of gallium (Ga) > thallium (Tl) > niobium (Nb) > tellurium (Te) > tantalum (Ta) > germanium (Ge) > indium (In) in wastewater (0.38 ng.L⁻¹) >sediment (0.3 ng g⁻¹) e-wastes (0.29 ng g⁻¹) > coastal water (0.26 ng.L⁻¹) > plastic wastes (0.133 ng g⁻¹) >fish (0.13 ng g⁻¹). The mean site-wise analysis of all the samples showed high TCE during winter than in the summer seasons as well, in the sequence of Site-II>Site-I>Site-V>Site-IV>Site-III. The mean distribution coefficient (Kd) of TCE was high in the summer (1.95) than during the winter (1.60) seasons but, the reverse seasonal effects were observed with the bioavailability (%BA) and geo-accumulation index (Igₑₒ). This index quantified TCE in e-wastes and plastic materials. Furthermore, these indicators labeled TCE as one among the sources for ‘Fish Kill,’ a futuristic threat to seafood consumers and a biomonitoring tool to marine pollution.
Show more [+] Less [-]Upregulation of miR-200c-3p induced by NaF promotes endothelial apoptosis by activating Fas pathway Full text
2020
Jiang, Yuting | Yang, Yanmei | Zhang, Chengzhi | Huang, Wei | Wu, Liaowei | Wang, Jian | Su, Mengyao | Sun, Dianjun | Gao, Yanhui
Fluoride has been considered as a risk factor of cardiovascular disease due to its endothelial toxicology. However, the mechanism underlying the endothelial toxicity of fluoride has not been clearly illustrated. MiR-200c-3p was strongly linked with endothelial function and its level is increased in serum of fluorosis patients, but it is unclear the role of miR-200c-3p in the fluoride induced endothelial dysfunction. In this study, we confirmed that fluoride exposure induced the apoptosis of endothelial cells both in established rats model and cultured human umbilical vein endothelial cells (HUVECs). And miR-200c-3p was found to be upregulated in NaF treated HUVECs. Fluoride stimulation increased caspase-dependent apoptosis through miR-200c-3p upregulation, with repressing expression of its target gene Fas-associated phosphatase 1 (Fap-1), which functioned as Fas inhibitor. This resulted in activation of Fas-associated extrinsic apoptosis via interaction with increased Fas, Fadd, Cleaved Caspase-8 and Cleaved Caspase-3. The activation of Fas-associated extrinsic apoptosis was abrogated by miR-200c-3p inhibitor. Furthermore, the antiapoptotic effect of downregulated miR-200c-3p was restored by Fap-1 siRNA. These results suggested a determinant role of the miR-200c-3p/Fap-1 axis in fluoride induced endothelial apoptosis.
Show more [+] Less [-]