Refine search
Results 1801-1810 of 6,560
Biological nitrification inhibitor for reducing N2O and NH3 emissions simultaneously under root zone fertilization in a Chinese rice field Full text
2020
Yao, Yuanlin | Zeng, Ke | Song, Yuzhi
Rice fields significantly contribute to the global N₂O and NH₃ emissions. Nitrification inhibitors (NIs) show promise in decreasing N₂O emission, but they can increase NH₃ volatilization under traditional broadcasting. Root zone fertilization (RZF) can mitigate NH₃ volatilization, but it may pose a high risk to N₂O emission. Additionally, most chemical NIs have limited availability and potential for environmental contamination, in contrast, biological NIs, such as methyl 3-(4-hydroxyphenyl) propionate (MHPP), are easily available and eco-friendly. However, the effects of RZF combined with MHPP on N₂O and NH₃ emissions are unknown. Therefore, a field experiment was conducted in a Chinese rice field with five treatments at 210 kg urea-N ha⁻¹ (BC: 3-split surface broadcasting; BC + MHPP: BC with MHPP; RZ, root zone fertilization; RZ + MHPP, RZF with MHPP; RZ + MHPP + NBPT, RZF with MHPP and NBPT). The results showed that although RZ eliminated NH₃ volatilization, it significantly increased total N₂O emission by 761% compared with BC due to the stimulation of nitrification by mid-season aeration (MSA) and the trigger of denitrification by a large amount of NO₃⁻. Nearly 90% N₂O was emitted at MSA stage for RZF treatments, and their N₂O fluxes were exponentially related to the soil NO₃⁻-N concentrations in the 7–20 cm deep soil layer. RZ + MHPP greatly reduced the peak values of N₂O flux due to the suppression of nitrification by MHPP and then less production of NO₃⁻ for denitrification, its total N₂O emission was 79% lower compared with that of RZ. However, RZ + MHPP + NBPT further increased the total N₂O emission by 1044% compared with that of BC. Compared to BC, the RZF practice reduced total NH₃ volatilization by 88–92% regardless use of NIs. RZF had no influence on CH₄ emissions and enhanced the rice yields. In conclusion, RZF + MHPP is a promising strategy for simultaneously reducing N₂O and NH₃ emissions in rice fields.
Show more [+] Less [-]Seasonal dynamics of the bacterial communities associated with cyanobacterial blooms in the Han River Full text
2020
Kim, Minkyung | Lee, Jaebok | Yang, Dongwoo | Park, Hye Yoon | Park, Woojun
DNA-based analyses of bacterial communities were performed to identify the bacteria co-occurring with cyanobacterial blooms in samples collected at a single site over 2 years. Microcystis aeruginosa was the most predominant species (81% in 2018, and 94% in 2019) within the phylum Cyanobacteria, and microcystins were detected during all cyanobacterial blooms. The stereo microscope and scanning electron microscope observations showed bacterial associations on and around the aggregated M. aeruginosa cells. Culture-independent analyses of filtered bacterial communities showed that the Flavobacterium species in phylum Bacteroidetes (19%) was dominant in the cyanobacterial phycosphere, followed by the Limnohabitans species in Betaproteobacteria (11%). Using principal component analysis, major bacterial genus, including Microcystis and Flavobacterium species, were clustered during cyanobacterial blooms in both years. To identify key bacterial species that develop long-term symbiosis with M. aeruginosa, another culture-independent analysis was performed after the environmental sample had been serially subcultured for 1 year. Interestingly, Brevundimonas (14%) was the most dominant species, followed by Porphyrobacter (7%) and Rhodobacter (3.5%) within the Alphaproteobacteria. Screening of 100 colonies from cyanobacterial bloom samples revealed that the majority of culturable bacteria belonged to Gammaproteobacteria (28%) and Betaproteobacteria (57%), including Pseudomonas, Curvibacter, and Paucibacter species. Several isolates of Brevundimonas, Curvibacter, and Pseudomonas species could promote the growth of axenic M. aeruginosa PCC7806. The sensitivity of M. aeruginosa PCC7806 cells to different environmental conditions was monitored in bacteria-free pristine freshwater, indicating that nitrogen addition promotes the growth of M. aeruginosa.
Show more [+] Less [-]Detection of Hg(II) in adsorption experiment by a lateral flow biosensor based on streptavidin-biotinylated DNA probes modified gold nanoparticles and smartphone reader Full text
2020
Guo, Zizhang | Kang Yan, | Liang, Shuang | Zhang, Jian
The increased occurrence of Mercury (Hg II) contaminant has caused environmental and health concerns worldwide. Removal of Hg(II) from water is of significant interest, in particular if these can be coupled in a manner of detection. Here, a novel activated carbon (AC) adsorbent and a fast detection device to form a closed-cycle strategy was developed. The synthesis of conjugates of streptavidin-biotinylated DNA probes modified gold nanoparticle was used with lateral flow biosensors for Hg(II) detection. A quantification was completed via a self-developed smartphone app and its limit of detection was 2.53 nM. Moreover, AC was activated with a new activating agent of diammonium hydrogen phosphate. The adsorbent was characterized and determined to have an amorphous microporous structure with a high surface area (1076.5 m² g⁻¹) and demonstrated excellent removal efficiency (99.99%) and adsorption capacity (∼100 mg g⁻¹) for Hg(II). The kinetics of the pseudo-second-order model and the mechanisms of electrostatic adsorption, ion exchange, and complex reactions are provided. The proposed closed-cycle strategy can be useful for early, fast, and mobile detection of Hg (II) pollution, followed by its effective removal during water treatment.
Show more [+] Less [-]Size-dependent effects of polystyrene plastic particles on the nematode Caenorhabditis elegans as related to soil physicochemical properties Full text
2020
Kim, Shin Woong | Kim, Dasom | Jeong, Seung-Woo | An, Youn-Joo
Plastic polymers are widely used in various applications and are thus prevalent in the environment. Over time, these polymers are slowly degraded into nano- and micro-scale particles. In this study, the free-living nematode, Caenorhabditis elegans, was exposed to polystyrene particles of two different sizes (42 and 530 nm) in both liquid and soil media. The number of offspring significantly (p < 0.05) decreased at polystyrene concentrations of 100 mg/L and 10 mg/kg in liquid and soil media, respectively. In soil media, but not liquid media, C. elegans was more sensitive to the larger particles (530 nm) than the smaller particles (42 nm), and the median effective concentration (EC₅₀) values of the 42 and 530 nm-sized particles were found to be > 100 and 14.23 (8.91–22.72) mg/kg, respectively. We performed the same toxicity bioassay on five different field-soil samples with different physicochemical properties and found that the size-dependent effects were intensified in clay-rich soil samples. A principal component analysis showed that the bulk density, cation exchange capacity, clay content, and sand content were the dominant factors influencing the toxicity of the 530 nm-sized polystyrene particles. Therefore, we conclude that the soil composition has a significant effect on the toxicity induced by these 530 nm-sized polystyrene particles.
Show more [+] Less [-]Immobilization of Hg(II) on high-salinity Spirulina residue-induced biochar from aqueous solutions: Sorption and transformation mechanisms by the dual-mode isotherms Full text
2020
Ge, Yiming | Zhu, Shishu | Chang, Jo-Shu | Jin, Chao | Ho, Shih-Hsin
Removal of Hg(II) by biochar (BC) is a promising remediation technology. The high-salinity Spirulina residue (HSR) is a hazardous waste generated during extracting the pigment phycocyanin under high salinity conditions. Although HSR-derived BC (HSRBC) exhibited the excellent sorption capacity of Hg(II), the involved mechanisms have been rarely studied. In this study, we investigated the specific properties and Hg(II) sorption mechanisms of HSRBCs. Chloride and calcium minerals were formed in HSRBCs. Increments in carbonization temperature (from 350 to 700 °C) or time (from 90 to 540 min) led to the enhancement of aromaticity, porosity, and positive charge, but cracked oxygen-containing groups and C–N bonds. Further increase in carbonization temperature or time decreased the sorption of Hg(II). At environmentally relevant concentration of Hg(II) (2–4 mg/L), the sorption capacity (6.1–12.7 mg/g) obtained in HSRBC350 was comparable to activated carbon. Based on dual-mode isotherm, surface sorption accounted for 75–88% uptake, while precipitation accounted for 12–25% uptake. In addition, the C–O, CO, and CC groups were responsible for the monodentate/bidentate complexation and reduction, while Cl⁻ triggered Hg₂Cl₂ precipitation. Overall, this study provided a new insight in creating an excellent Hg(II) sorbent from hazardous waste, and revealed the sorption mechanisms for Hg(II) uptake.
Show more [+] Less [-]Multidecadal water quality deterioration in the largest freshwater lake in China (Poyang Lake): Implications on eutrophication management Full text
2020
Li, Bing | Yang, Guishan | Wan, Rongrong
Poyang Lake is the largest freshwater lake in China and a globally important wetland with various functions. Exploring the multidecadal trend of water quality and hydroclimatic conditions is important for understanding the adaption of the lake system under the pressure from multiple anthropogenic and meteorological stressors. The present study applied the Mann–Kendall trend analysis and Pettitt test to detect the trend and breakpoints of hydroclimatic, and water quality parameters (from the 1980s to 2018) and the trend of monthly–seasonal ammonia (NH₄-N) and total phosphorus (TP)concentrations (from 2002 to 2018) in Poyang Lake. Results showed that Poyang Lake had undergone a highly significant warming trend from 1980 to 2018, with a warming rate of 0.44 °C/decade in terms of annual daily mean air temperature. The wind speed and water level of the lake presented a highly significant decreasing trend, whereas no notable trend was detected for precipitation variations. The annual mean total nitrogen (TN), NH₄-N, TP, and permanganate index (CODMₙ) concentrations showed significant upward trends from the 1980s to 2018. Remarkable abrupt shifts were detected for TN, NH₄-N, and CODMₙ in around 2003. They were in accordance with the water level breakpoint of the lake, thus implying the important role of hydrological conditions in water quality variations in floodplain lakes. A significant increasing trend has been detected for Chl-a variations during wet season from 2008 to 2018, which could be attributed to the increasing trend of nutrient concentration during the nutrient-limited phase of Poyang Lake. These hydroclimatic and water quality trends suggest a high risk of increasing phytoplankton growth in Poyang Lake. This study thus emphasizes the need for adaptive lake eutrophication management for floodplain lakes, particularly the consideration of the strong trade-off and synergies between hydroclimatic conditions and water quality variations.
Show more [+] Less [-]Fungicides enhanced the abundance of antibiotic resistance genes in greenhouse soil Full text
2020
Zhang, Houpu | Chen, Shiyu | Zhang, Qianke | Long, Zhengnan | Yu, Yunlong | Fang, Hua
Long-term substantial application of fungicides in greenhouse cultivation led to residual pollution in soils and then altered soil microbial community. However, it is unclear whether residual fungicides could affect the diversity and abundance of antibiotic resistance genes (ARGs) in greenhouse soils. Here, the dissipation of fungicides and its impact on the abundance of ARGs were determined using shotgun metagenomic sequencing in the greenhouse and mountain soils under laboratory conditions. Our results showed the greenhouse soils harbored more diverse and abundant ARGs than the mountain soils. The application of carbendazim, azoxystrobin, and chlorothalonil could increase the abundance of total ARGs in the greenhouse soils, especially for those dominant ARG subtypes including sul2, sul1, aadA, tet(L), tetA(G), and tetX2. The abundant ARGs were significantly correlated with mobile genetic elements (MGEs, e.g. intI1and R485) in the greenhouse soils but no significant relationship in the mountain soils. Meanwhile, the co-occurrence patterns of ARGs and MGEs, e.g., sul2 and R485, sul1 and transposase, were further verified via the genetic arrangement of genes on the metagenome-assembled contigs in the greenhouse soils. Additionally, host tracking analysis indicated that ARGs were mainly carried by enterobacteria in the greenhouse soils but actinomyces in the mountain soils. These findings confirmed that some fungicides might serve as the co-selectors of ARGs and elevated their abundance via MGEs-mediated horizontal gene transfer in the greenhouse soils.
Show more [+] Less [-]SODs involved in the hormone mediated regulation of H2O2 content in Kandelia obovata root tissues under cadmium stress Full text
2020
Pan, Chenglang | Lu, Haoliang | Liu, Jingchun | Yu, Junyi | Wang, Qiang | Li, Junwei | Yang, Jinjin | Hong, Hualong | Yan, Chongling
Cadmium (Cd) pollution in mangrove wetlands has received increasing attention as urbanization expands rapidly. As a dominant mangrove species, Kandelia obovata is highly tolerant to Cd toxicity. Plant hormones and superoxide dismutase (SODs) play critical roles in the response to heavy metal stress in K. obovata roots. Although theirs important influence have been reported, the regulation mechanism between SODs and plant hormones in Cd detoxification by K. obovata roots remains limited. Here, we investigated relationships among SOD, plant hormones, and Cd tolerance in K. obovata roots exposed to Cd. We found that Cd was retained in the epidermis and exodermis of roots, and the epidermis and exodermis had highest hydrogen peroxide (H2O2) content and SOD activity. Similarly, SOD isozymes also exhibited distinct activity in the different parts of root. Overexpressed KoCSD3 and KoFSD2 individually in Nicotiana benthamiana revealed that different SOD members contributed to H2O2 content regulation by promote the activity of downstream antioxidant enzymes under Cd treatment. In addition, assays on the effects of hormones showed that increased endogenous indole-3-acetic acid (IAA) was observed in the cortex and stele, whereas the abscisic acid (ABA) content was enhanced in the epidermis and exodermis in roots during Cd treatment. The results of exogenous hormones treatment indicated that KoFSD2 upregulated under ABA and IAA treatment, but KoCSD3 only induced by ABA stimulation. Taken together, our results reveal the relationship between SODs and plant hormones, which expands the knowledge base regarding KoSODs response to plant hormones and mediating H2O2 concentration under Cd stress.
Show more [+] Less [-]Biodegradation of low-density polyethylene and polystyrene in superworms, larvae of Zophobas atratus (Coleoptera: Tenebrionidae): Broad and limited extent depolymerization Full text
2020
Peng, Bo-Yu | Li, Yiran | Fan, Rui | Chen, Zhibin | Chen, Jiabin | Brandon, Anja M. | Criddle, Craig S. | Zhang, Yalei | Wu, Weimin
Larvae of Zophobas atratus (synonym as Z. morio, or Z. rugipes Kirsch, Coleoptera: Tenebrionidae) are capable of eating foams of expanded polystyrene (EPS) and low-density polyethylene (LDPE), similar to larvae of Tenebrio molitor. We evaluated biodegradation of EPS and LDPE in the larvae from Guangzhou, China (strain G) and Marion, Illinois, U.S. (strain M) at 25 °C. Within 33 days, strain G larvae ingested respective LDPE and PS foams as their sole diet with respective consumption rates of 58.7 ± 1.8 mg and 61.5 ± 1.6 mg 100 larvae⁻¹d⁻¹. Meanwhile, strain M required co-diet (bran or cabbage) with respective consumption rates of 57.1 ± 2.5 mg and 30.3 ± 7.7 mg 100 larvae⁻¹ d⁻¹. Fourier transform infrared spectroscopy, proton nuclear magnetic resonance, and thermal gravimetric analyses indicated oxidation and biodegradation of LDPE and EPS in the two strains. Gel permeation chromatography analysis revealed that strain G performed broad depolymerization of EPS, i.e., both weight-average molecular weight (Mw) and number-average molecular weight (Mₙ) of residual polymers decreased, while strain M performed limited extent depolymerization, i.e., Mw and Mₙ increased. However, both strains performed limited extent depolymerization of LDPE. After feeding antibiotic gentamicin, gut microbes were suppressed, and Mw and Mₙ of residual LDPE and EPS in frass were basically unchanged, implying a dependence on gut microbes for depolymerization/biodegradation. Our discoveries indicate that gut microbe-dependent LDPE and EPS biodegradation is present within Z. atratus in Tenebrionidae, but that the limited extent depolymerization pattern resulted in undigested polymers with high molecular weights in egested frass.
Show more [+] Less [-]Phosphorus transport in riverbed sediments and related adsorption and desorption characteristics in the Beiyun River, China Full text
2020
Liao, Renkuan | Hu, Jieyun | Li, Yunkai | Li, Shuqin
Riverbed sediments are the interface layer in riverine ecosystems connecting the overlying medium of water and the vadose zone. The transport behavior of phosphorus (P), which has been recognized as the primary cause of freshwater eutrophication, in riverbed sediments remains unclear. Understanding the impact of riverbed sediments on P transport is a necessary prerequisite for the development of appropriate strategies to reduce potential groundwater pollution. In this study, riverbed sediments were collected from the upstream, midstream, and downstream sections of the Beiyun River, China, and packed into vertical soil columns to perform leaching experiments to quantify P transport characteristics. In addition, the impact mechanisms were further explored by conducting laboratory batch tests of P adsorption and desorption. The results demonstrated that approximately 80% of P can be adsorbed by riverbed sediments in soil column leaching experiment, and a tailing phenomenon was observed in its desorption. The hydraulic conductivity properties of riverbed sediments were evaluated by the advection-dispersion equation, showing a gradually decreasing adsorption capacity for P from upstream to downstream sections, which was supported by the results obtained from adsorption–desorption thermodynamic and kinetic batch tests. The estimated annual leaching masses of P increased from 60.72 g/(m² a) in the upstream section to 132.31 g/(m² a) in the downstream section. The role of riverbed sediments as a source or sink of P is possibly determined by their coarse sand particles content, and the mean equilibrium P concentration (EPC0). The competitive relationship between P and other forms of nutrients also has an important influence on its source-sink role. These findings suggest that the prevention of the potential P leaching is most needed in the downstream sections of Beiyun River, and corresponding control strategies should be developed to avoid groundwater pollution.
Show more [+] Less [-]