Refine search
Results 1811-1820 of 3,243
The application of soil amendments benefits to the reduction of phosphorus depletion and the growth of cabbage and corn
2015
Liu, Wei | Ji, Hongli | Kerr, Philip | Wu, Yonghong | Fang, Yanming
The loss of phosphorus from agricultural intensive areas can cause ecological problems such as eutrophication in downstream surface waters. Therefore, the purpose of this study is to control the phosphorus loss using environmentally benign soil amendments, viz, ferrous sulfate (FES), aluminum sulfate (ALS), and polyacrylamide (PAM). The phosphorus concentration changes in soil and leaching solution, the morphological index of plant (including stem and root), and root activity and quality (represented by chlorophyll and soluble sugar) at different growth stages of cabbage (Brassica oleracea L. var. capitata L.) were monitored in a pilot experiment. Phosphorus contents in soil and runoff were also investigated in field experiments cultivated with corn (Zea mays L.). The results show that the application of these amendments improved the phosphorus uptake by cabbage and corn, resulting in the enhanced morphologies of root and stem as well as the root activity at the early and middle stages of cabbage growth. The soil total phosphorus and available phosphorus in soils treated with FES, ALS, and PAM declined, resulting in lower concentrations of phosphorus in the leachate and the soil runoff. During the use of the soil amendments, the cabbage quality measures, determined as chlorophyll and soluble sugar in leaves, were not significantly different from those in the control. It is suggested that the application of these soil amendments is safe for cabbage production under single season cropping conditions, and the use of these three amendments is a promising measure to reduce phosphorus loss in intensive agricultural areas.
Show more [+] Less [-]Fish embryo tests with Danio rerio as a tool to evaluate surface water and sediment quality in rivers influenced by wastewater treatment plants using different treatment technologies
2015
Thellmann, Paul | Köhler, Heinz-R. | Rößler, Annette | Scheurer, Marco | Schwarz, Simon | Vogel, Hans-Joachim | Triebskorn, Rita
In order to evaluate surface water and the sediment quality of rivers connected to wastewater treatment plants (WWTPs) with different treatment technologies, fish embryo tests (FET) with Danio rerio were conducted using native water and sediment samples collected upstream and downstream of four WWTPs in Southern Germany. Two of these WWTPs are connected to the Schussen River, a tributary of Lake Constance, and use a sand filter with final water purification by flocculation. The two others are located on the rivers Schmiecha and Eyach in the area of the Swabian Alb and were equipped with a powdered activated carbon stage 20 years ago, which was originally aimed at reducing the release of stains from the textile industry. Several endpoints of embryo toxicity including mortality, malformations, reduced hatching rate, and heart rate were investigated at defined time points of embryonic development. Higher embryotoxic potentials were found in water and sediments collected downstream of the WWTPs equipped with sand filtration than in the sample obtained downstream of both WWTPs upgraded with a powdered activated carbon stage.
Show more [+] Less [-]Degradation of four organophosphorous pesticides catalyzed by chitosan-metal coordination complexes
2015
Zhang, Li | Li, Bo | Meng, Xianghong | Huang, Lin | Wang, Dongfeng
Three types of chitosan with high (3.40 × 10⁶), medium (2.11 × 10⁵), and low (5.89 × 10⁴) molecular weights were chosen as ligands to synthesize chitosan magnesium, calcium, iron(III), and zinc coordination complexes. Degradation of four organophosphorous pesticides (dichlorvos, omethoate, dimethoate, and chlorpyrifos) by the above complexes in a heterogeneous system was studied using solid-phase extraction (SPE) and gas chromatography (GC). The degradation effect is related to the different types of chitosan, metal, and organophosphorus pesticides (OPs). Complexes of transition metals and the low molecular weight chitosan showed high hydrolytic activity. The chitosan-iron(III) complex was further used to study its catalytic kinetics on the hydrolysis of OPs. At pH 7.0 and 20 °C, the half-life of dichlorvos hydrolyzed by chitosan iron(III) was 52 h, whereas that of spontaneous dichlorvos hydrolysis was 105 h. The degradation ratio of omethoate and dimethoate increased to 38 and 52 %, respectively, which were 34 and 48 % higher than the control after 6 days at pH 7.0 and 20 °C. For all tested conditions, an increase of pH and temperature resulted in a higher degradation rate.
Show more [+] Less [-]Enhanced hydroxyl radical generation in the combined ozonation and electrolysis process using carbon nanotubes containing gas diffusion cathode
2015
Wu, Donghai | Lü, Guanghua | Zhang, Ran | Lin, Qiuhong | Yan, Zhenhua | Liu, Jianchao | Li, Yi
Combination of ozone together with electrolysis (ozone-electrolysis) is a promising wastewater treatment technology. This work investigated the potential use of carbon nanotube (CNT)-based gas diffusion cathode (GDC) for ozone-electrolysis process employing hydroxyl radicals (·OH) production as an indicator. Compared with conventional active carbon (AC)-polytetrafluoroethylene (PTFE) and carbon black (CB)-PTFE cathodes, the production of ·OH in the coupled process was improved using CNTs-PTFE GDC. Appropriate addition of acetylene black (AB) and pore-forming agent Na₂SO₄ could enhance the efficiency of CNTs-PTFE GDC. The optimum GDC composition was obtained by response surface methodology (RSM) analysis and was determined as CNTs 31.2 wt%, PTFE 60.6 wt%, AB 3.5 wt%, and Na₂SO₄ 4.7 wt%. Moreover, the optimized CNT-based GDC exhibited much more effective than traditional Ti and graphite cathodes in Acid Orange 7 (AO7) mineralization and possessed the desirable stability without performance decay after ten times reaction. The comparison tests revealed that peroxone reaction was the main pathway of ·OH production in the present system, and cathodic reduction of ozone could significantly promote ·OH generation. These results suggested that application of CNT-based GDC offers considerable advantages in ozone-electrolysis of organic wastewater.
Show more [+] Less [-]Hexachlorocyclohexane (HCH) in human blood in the south of the Russian Far East
2015
The content of organochlorine pesticides in blood of residents of the Russian Far East is assessed. Among hexachlorocyclohexane isomers, only β-HCH has been found. This fact indicates that contamination of the environment and human organisms by this pesticide began long ago. Its concentration varies from 2060 to 22,230 ng/g lipid. The probable sources of the toxicant found in human organisms are discussed.
Show more [+] Less [-]Dechlorane Plus and decabromodiphenyl ether in atmospheric particles of northeast Asian cities
2015
Atmospheric particles were collected in several cities in Japan (Sapporo, Sagamihara, Kanazawa, and Kitakyushu), Korea (Busan), and China (Beijing) using a high-volume air sampler equipped with a quartz fiber filter. The summer and winter samples were analyzed using gas chromatography–high-resolution mass spectrometry for Dechlorane Plus (DP). Decabromodiphenyl ether (BDE-209) was also analyzed for the samples from Kanazawa and Beijing. DP was detected in all samples. The mean total DP (ΣDP) concentration was highest (6.7 pg/m³) and lowest (0.87 pg/m³) in the winter samples from Sagamihara and Busan, respectively. The seasonal variation of DP concentrations varied by sampling site in this study. BDE-209 was detected in all the analyzed samples except for one of the Kanazawa winter samples. BDE-209 concentration was considerably higher in Beijing than in Kanazawa. Significant correlations were found between the concentrations of ΣDP and BDE-209 in the winter samples from Kanazawa and in both summer and winter samples from Beijing. This similarity in the atmospheric behavior of DP and BDE-209, especially in winter, is assumed to reflect a common end usage and release mechanism.
Show more [+] Less [-]Trends of labile trace metals in tropical urban water under highly contrasted weather conditions
2015
The spatio-temporal trend of trace metals (Cd, Co, Cr, Cu, Ni, Pb, and Zn) in a tropical urban estuary under the influence of monsoon was determined using diffusive gradient in thin films (DGT) in situ samplers. Three different climatic periods were observed: period 1, dry with dredging activity; period 2, intermediate meaning from dry to wet event; and period 3, wet having continuous rainfall. Conforming to monsoon regimes, these periods correspond to the following: transition from winter to summer, winter, and summer monsoons, respectively. The distinction of each period is defined by their specific hydrological and physico-chemical conditions. Substantial concentrations of the trace metals were detected. The distribution and trend of the trace metals under the challenge of a tropical climate were able to follow using DGT as a sensitive in situ sampler. In order to identify the differences among periods, statistical analyses were performed. This allowed discriminating period 2 (oxic water) as significantly different compared to other periods. The spatio-temporal analysis was then applied in order to distinguish the trend of the trace metals. Results showed that the trend of trace metals can be described according to their response to (i) seasonal variations (Cd and Cr), (ii) spatio-temporal conditions (Co, Cu, Ni, and Pb), and (iii) neither (i) nor (ii) meaning exhibiting no response or having constant change (Zn). The correlation of the trace metals and the physico-chemical parameters reveals that Cd, Co, Cu, and Cr are proportional to the dissolved oxygen (DO), Cd and Ni are correlated pH, and Zn lightly influenced by salinity.
Show more [+] Less [-]Organic matter and pollutants monitoring in reed bed systems for sludge stabilization: a case study
2015
Peruzzi, Eleonora | Macci, Cristina | Doni, Serena | Volpi, Maurizio | Masciandaro, Grazia
In this study, results about sludge stabilization and pollutant monitoring in a reed bed system (RBSs) situated in Central Italy (Colle di Compito, 4,000 p.e.) were presented. In order to evaluate the process of sludge stabilization, parameters that highlighted the biochemical, chemical and chemico-structural properties of organic sludge matter have been followed during the entire period of operation (7 years). Moreover, the trend of heavy metals (bioavailable fractions and total content) and toxic organic compounds (LAS, NPE and DEHP) was monitored during all the period. The trend of all parameters related clearly demonstrated that sludge stabilization successfully proceeded in RBS. Moreover, through statistical analysis modelling, it is possible to determine how the stabilization process proceeded in terms of organic matter mineralization and humification, and how these processes influenced the content of pollutant compounds present in the stabilized sludges.
Show more [+] Less [-]Speciation of phosphorus in Lake Dang of Ngaoundere-Cameroon
2015
Bertrand, Noumi Guy | Marie, Sieliechi Joseph | Fidèle, Fabane | Jean-Marie, Dangwang Dikdim
In this study, we investigated the nature of phosphate phase present in sediment of Lake Dang. The phosphate speciation was determined by sequential extraction method. The concentration of phosphate in solution was measured by the ammonium molybdate method with ascorbic acid as the reducing agent. Water and sediment (surface and bottom) were sampled at eight points around the lake by taking into account activities around the lake during dry and rainy seasons. The results showed five forms of phosphorus presents in the sediments. The rank order obtained was Res-P < P-L < P-OM < P-Ca < P-Fe with the prevalence of inorganic phosphorus (P-L + P-Ca + P-Fe) than organic phase. The average phosphorus (P) content was 133, 86, and 52 μg g⁻¹for the surface layer (A, 0–5 cm), medium layer (B, 5–10 cm), and bottom layer (C, 10–15 cm), respectively. This P-content depletion with depth can be explained mainly by oxygen depletion with depth which enhance P desorption. Except P-L form, the P contents were higher in rainy season compared to the dry season. The results of principal component analysis indicate that inorganic phosphorus (P-L + P-Ca + P-Fe) were linked and were provided mainly by car-washing. It appears clearly that phosphorus content vary significantly during the seasons. These results showed also that the amount of (P-Fe) is higher than the others whatever the season. This P form is easily labile and bioavailable which suggest that it can unfortunately enhance greatly the eutrophication of Lake Dang.
Show more [+] Less [-]Electrocoagulation of colloidal biogenic selenium
2015
Staicu, Lucian C. | van Hullebusch, Eric D. | Lens, P. N. L. (Piet N. L.) | Pilon-Smits, Elizabeth A. H. | Oturan, Mehmet A.
Colloidal elemental selenium (Se(0)) adversely affects membrane separation processes and aquatic ecosystems. As a solution to this problem, we investigated for the first time the removal potential of Se(0) by electrocoagulation process. Colloidal Se(0) was produced by a strain of Pseudomonas fluorescens and showed limited gravitational settling. Therefore, iron (Fe) and aluminum (Al) sacrificial electrodes were used in a batch reactor under galvanostatic conditions. The best Se(0) turbidity removal (97 %) was achieved using iron electrodes at 200 mA. Aluminum electrodes removed 96 % of colloidal Se(0) only at a higher current intensity (300 mA). At the best Se(0) removal efficiency, electrocoagulation using Fe electrode removed 93 % of the Se concentration, whereas with Al electrodes the Se removal efficiency reached only 54 %. Due to the less compact nature of the Al flocs, the Se-Al sediment was three times more voluminous than the Se-Fe sediment. The toxicity characteristic leaching procedure (TCLP) test showed that the Fe-Se sediment released Se below the regulatory level (1 mg L⁻¹), whereas the Se concentration leached from the Al-Se sediment exceeded the limit by about 20 times. This might be related to the mineralogical nature of the sediments. Electron scanning micrographs showed Fe-Se sediments with a reticular structure, whereas the Al-Se sediments lacked an organized structure. Overall, the results obtained showed that the use of Fe electrodes as soluble anode in electrocoagulation constitutes a better option than Al electrodes for the electrochemical sedimentation of colloidal Se(0).
Show more [+] Less [-]