Refine search
Results 1821-1830 of 3,991
Leaching of a Mixture of Hexazinone, Sulfometuron-Methyl, and Diuron Applied to Soils of Contrasting Textures
2016
Mendes, Kassio Ferreira | Inoue, Miriam Hiroko | Goulart, Michael Ortigara | Pimpinato, Rodrigo Floriano | Tornisielo, Valdemar Luiz
The increasing use of herbicides in sugarcane production has increased environmental concern regarding the fate of these compounds, especially when they are used in mixtures. Among the various processes that determine the behavior of molecules in the environment, leaching stands out. In this context, the aim of this study was to evaluate the leaching of a mixture of hexazinone, sulfometuron-methyl, and diuron in soils with contrasting textures. A completely randomized experimental design containing three replications in a 2 × 6 factorial arrangement was used, with two soils (alfisol–Paleudult, sandy clay texture and ultisol–typic Hapludalf, sandy loam texture) and six depths (0–0.05, 0.05–0.10, 0.10–0.15, 0.15–0.20, 0.20–0.25, and 0.25–0.30 m). Three glass columns of 50 cm were used for each soil. The dose used was 391.0 + 33.35 + 1386.9 g a.i. ha⁻¹ of hexazinone, sulfometuron-methyl and diuron, respectively. After applying the mixture to the top of each column, rainfall simulation with 200 mm of 0.01 mol L⁻¹ CaCl₂ solution was applied for 48 h. The leachates were collected at 6, 12, 24, 36, and 48 h. The chromatographic determinations of the herbicides were performed by high-performance liquid chromatography (HPLC) with a UV-Vis detector. For hexazinone, the highest percentage recovery in the soil with a sandy clay texture occurred at a depth of 0.10–0.15 m, with 40 % recovered, while in the soil with a sandy loam texture, the most part was recovered at a depth of 0.25–0.30 m. Diuron demonstrated little mobility in the soil and was detected in most cases only in the surface layer (up to 0.10 m) in both soils. Sulfometuron-methyl, in soil with a sandy clay texture, was detected to a depth of 0.15–0.20 m with the highest concentration found at a depth of 0–0.05 m, while in sandy loam soil, a higher concentration was found at a depth of 0.10–0.15 m; this herbicide was detected down to 0.25–0.30 m. These results show that the soil texture directly influences the leaching of hexazinone, sulfometuron-methyl, and diuron.
Show more [+] Less [-]Metal concentrations in water, sediment and three fish species from the Danube River, Serbia: a cause for environmental concern
2016
Ivanović, Jelena | Janjić, Jelena | Baltić, Milan | Milanov, Raša | Bošković, Marija | Marković, Radmila V. | Glamočlija, Nataša
The aim of this study was to investigate the presence of metal contamination in water, sediments and three different fish species. All samples were taken from the Danube River in Belgrade Region, a location upstream from Grocka. Concentrations of Cd, Hg and Pb in water samples were not detected, while concentrations of Zn, Fe, Cu and As were in the range of 0.004–0.41 mg L⁻¹. Iron was the most deposited metal in sediment samples (17,530.00 mg kg⁻¹). For the purpose of heavy metal determination in fish tissue, silver carp, common carp and wels catfish were collected. Concentrations of Pb, Cd and As were determined in muscle, digestive tract and liver by inductively coupled plasma-optical emission spectrophotometry (IPC-OES). The highest concentration of Pb was in the digestive tract of all three fish species, while Cd was mostly deposited in the liver. The highest concentration of Hg was in the muscle tissue of wels catfish, and these values are above the maximum residual levels prescribed by the European Union and the maximum allowed concentrations (MACs) for Serbia. Concentration of As was mostly deposited in the liver, but under the MAC.
Show more [+] Less [-]Partitioning of Dichloro-diphenyl-trichloroethane and Its Metabolites Between Artificial Solid Media and Air
2016
Zhang, Yaping | Bi, Erping | Chen, Honghan
Soil–air partitioning is an important diffusive process affecting the environmental fate of organic compounds. In this study, the soil–air partition coefficients (K SA) for dichloro-diphenyl-trichloroethane and its metabolites (designated as DDTs, the sum of p, p′- and o, p′-isomers of DDT, DDD, and DDE) over a temperature range from 5 to 50 °C in artificial solid media were determined by a solid–fugacity meter. The results showed that log K SA gradually increased with soil organic carbon content (f OC). A reversed relationship was observed between log K SA values and the environmental temperatures (T). The enthalpy changes (ΔH SA) indicated that o, p′-isomers required more energy to release from artificial solid media to the gas phase. Moreover, with increasing temperature, the slope of the regression line of log K SA vs. log K OA (octanol–air partition coefficient) was approaching to 1. Based on factors influencing soil–air partitioning and the experimental data, a multiple parameter (T, f OC, and K OA) model was used to predict the K SA values for DDTs.
Show more [+] Less [-]Retention of Atmospheric Particulate by Three Woody Ornamental Species in Santiago, Chile
2016
Guerrero-Leiva, Nicole | Castro, SergioA. | Rubio, MaríaA. | Ortiz-Calderón, Claudia
It is traditionally accepted that urban vegetation contributes to improve air quality by intercepting and retaining the particulate matter. Although the mitigating role of plants has been recognized by several studies, the role of individual species is still poorly understood. This is particularly important in cities like Santiago (Chile), which has high levels of atmospheric particulate and also has high plant species diversity. In this study, we evaluated the retention of atmospheric particles by three widely distributed ornamental species (Nerium oleander, Pittosporum tobira, and Ligustrum lucidum) in Santiago. For this proposal, we took leaf samples in different sampling points across the city which vary in their concentration of atmospheric particulate. Samples were taken 12 and 16 days after a rainfall episode that washed the leaves of plants in the sampling sites. In the laboratory, leaves were washed to recover the surface retained particles that were collected to determine its mass gravimetrically. With this information, we estimated the foliar retention (mass of particulate matter retained in the foliar surface) and daily retention efficiency (mass of particulate matter retained in the foliar surface per day). We found that foliar retention and daily retention efficiency varied significantly between the studied species. The leaves of N. oleander retained 8.2 g m⁻² of particulate matter on average, those of P. tobira 6.1 g m⁻², and those of L. lucidum 3.9 g m⁻²; meanwhile, the daily retention efficiencies of particulate matter were 0.6, 0.4, and 0.3 g m⁻² day⁻¹ for N. oleander, P. tobira, and L. lucidum, respectively. These results suggest that the studied species retain atmospheric particulate matter differentially in Santiago. These results can be attributed to differences on leaf surface characteristics. The recognition of the most efficient species in the retention of the atmospheric particulate matter can help to decide which species can be used to improve the air quality in the city.
Show more [+] Less [-]Assessing the Chemical and Biological Resilience of Lakes in the Cascade Range to Acidic Deposition
2016
Eilers, Joseph | Vache, Kellie | Eilers, Benn | Sweets, Roger | Cornett, Jack
The potential for atmospheric deposition of sulfur and nitrogen to affect lakes in the Northwestern USA to cause lake acidification was assessed by examining four lakes extending from southern Oregon into the central Washington Cascades. The four lakes were dilute (conductivity 2.2 to 3.6 μS/cm), low ANC (−3 to 11 μeq/L) systems, located in subalpine to alpine settings in designated wilderness areas. The four lakes were cored, dated with ²¹⁰Pb and ¹⁴C, and analyzed for sediment nutrients and diatom remains. Diatom-inferred changes in chemistry were made possible through an earlier project to create a diatom calibration set for the Cascades. The three southern lakes exhibited volcanic inputs of ash or tephra, but diatom stratigraphy generally showed only modest responses to these events. None of the lakes exhibited any recent trends in diatom-inferred pH. The most significant finding with respect to paleolimnology was that Foehn Lake, WA, was formed in the twentieth century (1930 ± 7 years), likely as a result of melting of an adjacent snowfield. Current deposition was estimated using the AIRPACT-3 system, and lake chemistry was simulated using the CE-QUAL-W2 hydrodynamic model that had been modified to represent acid-base chemistry. The model simulations showed that the three southern lakes in the transect were insensitive to increases of nitrogen and sulfur until simulated increases reached 300% of current levels. Foehn Lake showed simulated declines of pH and ANC beginning at 50% increases over current deposition of S and N. The three southern lakes are resistant to changes from atmospheric deposition and other disturbances because of long hydraulic residence times, allowing internal processes to neutralize acidic inputs.
Show more [+] Less [-]Removal of Heavy Metal Ions by Ferrihydrite: an Opportunity to the Treatment of Acid Mine Drainage
2016
Karapınar, Nuray
Ferrihydrite is often an initial precipitate resulting from the neutralization of Fe(III) solution, and it seems to be one of the products of acid mine drainage forming reactions. Since having the adsorption properties, ferrihydrite can be effective for the remediation of acid mine drainage. This study prepared fresh ferrihydrite by the rapid hydrolysis of Fe(III) ions and investigates its adsorptive behaviours toward Pb(II), Cu(II), and Zn(II). When the sorption data were presented in plot of percent sorbed versus pH, it was found that sorption is strongly dependent on the solution pH and increasing as expected at higher pH for all metal ions investigated. All the observed metal cation sorption began at pH values below zero point charge (ZPC) of ferrihydrite (pH = 7.8–8.0), and almost all removal are achieved at pH values lower than that related metal hydroxide obtained. Enhanced removal of metal ions, as the pH of the solution and initial metal ion concentration are increased, was attributed to surface precipitation of metal hydroxide. The existence of ferrihydrite and adsorption of metal ions onto surfaces are favouring surface precipitation of metal ions at lower pH values than that for metal ion only. Depending on the pH of the solution and initial metal ion concentration, more than one mechanism such as adsorption by complexation and surface precipitation was responsible for the removal.
Show more [+] Less [-]Degradation of Ibuprofen in Aqueous Solution with UV Light: the Effect of Reactor Volume and pH
2016
Iovino, Pasquale | Chianese, Simeone | Canzano, Silvana | Prisciandaro, Marina | Musmarra, Dino
The presence of trace of pharmaceutical compounds (PhACs) in groundwater and in drinking and superficial waters is a major public health concern. Recently, various advanced treatment technologies have been studied to remove these kinds of pollutants; among them, combined treatments based on UV light appear to be more eco-friendly and with very interesting removal efficiencies if properly modified. In this paper, the removal of Ibuprofen (IBP) from synthetic water streams was investigated by using a lab-scale experimental device consisting of a batch reactor equipped with a lamp emitting monochromatic UV light (254 nm; 400 mJ m⁻²). The IBP initial concentration (C IBP ⁰) was 45.9 mg L⁻¹. Two sets of experiments were carried out; the first one was aimed at studying the IBP concentration as a function of time, at different volumes of treated solution; the second one was aimed at exploring the effect of pH on IBP degradation as a function of time. The results obtained show that the concentration of IBP decreases along with treatment time, with a negative effect of the treated volume, i.e., smaller volumes, that is lower liquid heights, are more easily degraded. Moreover, the higher the pH, the better the IBP degradation; actually when pH increases from 2.25 to 5.51 and finally to 8.25, the IBP concentration, after an hour of treatment, decreases respectively to 45, 34, and 27 % from its initial value. A reaction mechanism is suggested, which well describes the effects of volume and pH on the experimentally measured IBP degradation.
Show more [+] Less [-]Reactive Extraction of Phenol from Aqueous Solution Using Trioctylmethylammoniumchloride and Trioctylamine in Nonane and Isoamyl alcohol
2016
Uslu, Hasan | Datta, Dipaloy | Bamufleh, Hisham S.
Reactive extraction of phenol (0.053 mol kg⁻¹) from aqueous solution is carried out using two aminic extractants, trioctylmethylammoniumchloride (TOMAC) and trioctylamine (TOA) considering four concentrations (0.023 to 0.091 mol kg⁻¹) and dissolving them in solvents like nonane and isoamyl alcohol (IAA) at 298 K. The effects of extract type (TOMAC and TOA), their concentrations, and type of diluent on the separation efficiency of extraction have been determined. Data show that the neutral phenol molecule is more effectively extracted by TOA than TOMAC into the organic phase. Increase in the extractant concentration from 0.023 to 0.091 mol kg⁻¹ obviously enhances the recovery of phenol (2.3 times with nonane + TOMAC or TOA; 2.97 times with IAA + TOMAC; and 4.83 times with IAA + TOA). The equilibrium extraction results are presented in terms of distribution coefficient (D), degree of extraction (%E), and loading ratio (Z). Maximum value of D (=12.25) is obtained with TOA + IAA (0.091 mol kg⁻¹) which could extract 92.45 % of phenol from the water phase. A suitable mathematical model for the determination of equilibrium D is expressed by employing the mass action law. The equilibrium constant (K E) and the stoichiometric coefficient (n) of extraction are determined graphically. Also, the individual equilibrium constants (K ₁₁, K ₂₁, and K ₁₂) for the phenol-extractant complexes formed are estimated from the regression of the experimental values. The better extraction power of the TOA + IAA extract system is also shown from the estimated value of complexation constant (K E = 164.44). Phenol molecules form 1:1 and 2:1 and 1:1 and 1:2 solvates with nonane and IAA, respectively, with both the extractants.
Show more [+] Less [-]Oak (Quercus robur) Acorn Peel as a Low-Cost Adsorbent for Hexavalent Chromium Removal from Aquatic Ecosystems and Industrial Effluents
2016
Kuppusamy, Saranya | Thavamani, Palanisami | Megharaj, Mallavarapu | Venkateswarlu, Kadiyala | Lee, Yong Bok | Naidu, R.
The efficiency of low-cost, abundantly available local forestry waste, oak (Quercus robur) acorn peel (OP), to remove toxic Cr(VI) from aqueous solutions was studied in a batch system as a function of contact time, adsorbate concentration, adsorbent dosage, and pH. In an equilibrium time of 420 min, the maximum Cr removal by OP at pH 2 and 10 was 100 and 97 %, respectively. The sorption data fitted well with Langmuir adsorption model. Evaluation using Langmuir expression presented a monolayer sorption capacity of 47.39 mg g⁻¹ with an equilibrium sorbent dose of 5 g L⁻¹ and pH 7. Uptake of Cr by OP was described by pseudo-second-order chemisorption model. ICP-OES, LC-ICPMS analysis of the aqueous and solid phases revealed that the mechanism of Cr(VI) removal is by ‘integrated adsorption and reduction’ mechanism. ESEM-EDX and XRD analysis of OP before and after adsorption also confirmed that both adsorption and reduction of Cr(VI) to less toxic Cr³⁺ forms followed by complexation onto the adsorbent surface contributed to the removal of Cr(VI). Consistent with batch studies, OP effectively removed (>95 %) Cr from the real water samples collected from lake and sea. The results of this study illustrate that OP could be an economical, green, and effective biomaterial for Cr(VI) removal from natural aquatic ecosystems and industrial effluents.
Show more [+] Less [-]Transport of Atrazine Versus Bromide and δO18 in Sand
2016
Tindall, James | Friedel, Michael J.
The objective of this research was to determine the process of atrazine transport compared to bromide and δO¹⁸ transport in sands near Denver. Three 1.5 × 2 × 1.5-m plots were installed and allowed to equilibrate for 2 years before research initiation and were instrumented with 1.5 × 2-m zero-tension pan lysimeters installed at 1.5-m depths. Additionally, each plot was instrumented with suction lysimeters, tensiometers, time domain reflectometry (TDR) moisture probes, and thermocouples (to measure soil temperature) at 15-cm depth increments. All plots were enclosed with a raised frame (of 8-cm height) to prevent surface runoff. During the 2-year period before research began, all suction and pan lysimeters were purged monthly and were sampled for fluids immediately prior to atrazine and KBr application to obtain background concentrations. Atrazine illustrated little movement until after a significant rainfall event, which peaked concentrations at depths of about 90 to 135 cm. Both Br⁻ and δO¹⁸ moved rapidly through the soil, probably owing to soil porosity and anion exclusion for Br⁻. Concentrations of atrazine exceeding 5.0 μL⁻¹ were observed with depth (90 to 150 cm) after several months. It appears that significant rainfall events were a key factor in the movement of atrazine in the sand, which allowed the chemicals to move to greater depths and thus avoid generally found biodegradation processes.
Show more [+] Less [-]