Refine search
Results 1821-1830 of 6,560
Increasing phosphate inhibits cadmium uptake in plants and promotes synthesis of amino acids in grains of rice Full text
2020
Zhao, Yanling | Zhang, Changbo | Wang, Changrong | Huang, Yongchun | Liu, Zhongqi
Technologies for cleaner production of rice in cadmium (Cd) contaminated field are being explored worldwide. In order to investigate the inhibition mechanism of phosphate on Cd transport in soil-plant system, controlled experiments were performed in this study. Experimental results showed that Cd levels in roots, flag leaves, rachises and grains of rice plants (Oryza sativa L.) were significantly reduced by supplement of 0.5–2.5 g kg⁻¹ calcium magnesium phosphate fertilizer (CMP). Path coefficient analysis revealed that phosphorous had significant negative direct effect on Cd, but positive indirect effect on essential and non-essential amino acids. Applying 2.5 g kg⁻¹ CMP made the Cd concentration decreased by 45.7% while free essential and non-essential amino acids increased by 28.0–28.6% in grains. Levels of the branched-chain amino acids in grains were much higher than other essential amino acids, and increased with the amount of CMP fertilization. After application of CMP, pH of soil solution and thickness of the iron plaque around roots increased significantly. Spectra from X-ray photoelectron spectrometer (XPS) showed that content of N, P and Fe increased apparently, C, O and Ca had no change, while S decreased by 74.2% in roots after application of 2.5 g kg⁻¹ CMP. Meanwhile, Cd concentration in protoplasts of root cells decreased by 39.5–80.1% with the increase of CMP. These results indicate that application of CMP can effectively inhibit Cd accumulation in root protoplasts by promoting iron plaque formation on the root surface, reduce Cd concentration and increase free amino acids in rice grains.
Show more [+] Less [-]Sources and atmospheric processing of brown carbon and HULIS in the Indo-Gangetic Plain: Insights from compositional analysis Full text
2020
Mukherjee, Arya | Dey, Supriya | Rana, Archita | Jia, Shiguo | Banerjee, Supratim | Sarkar, Sayantan
We present here spectroscopic compositional analysis of brown carbon (BrC) and humic-like substances (HULIS) in the Indian context under varying conditions of source emissions and atmospheric processing. To this end, we study bulk water-soluble organic matter (WSOM), neutral- and acidic-HULIS (HULIS-n and HULIS-a), and high-polarity (HP)-WSOM collected in the eastern Indo-Gangetic Plain (IGP) with respect to UV–Vis, fluorescence, FT-IR, ¹H NMR and ¹³C characteristics under three aerosol regimes: photochemistry-dominated summer, aged biomass burning (BB)-dominated post-monsoon, and fresh BB-dominated winter. Absorption coefficients (bₐbₛ_₃₆₅ ₙₘ; Mm⁻¹) of WSOM and HULIS fractions increase by a factor of 2–9 during winter as compared to summer, with HULIS-n dominating total HULIS + HP-WSOM absorption (73–81%). Fluorophores in HULIS-n appear to contain near-similar levels of aromatic and unsaturated aliphatic conjugation across seasons, while HULIS-a exhibits distinctively smaller-chain structures in summer and post-monsoon. FT-IR spectra reveals, among others, strong signatures of aromatic phenols in winter WSOM suggesting a BB-related origin. ¹H NMR-based source attribution coupled with back trajectory analysis indicate the presence of secondary and BB-related organic aerosol (SOA and BBOA) in the post-monsoon and winter, and marine-derived OA (MOA) in the summer, which is supported by ¹³C measurements. Overall, these observations uncover a complex interplay of emissions and atmospheric processing of carbonaceous aerosols in the IGP.
Show more [+] Less [-]Ameliorative effects of silicon fertilizer on soil bacterial community and pakchoi (Brassica chinensis L.) grown on soil contaminated with multiple heavy metals Full text
2020
Wang, Binghan | Chu, Changbin | Wei, Huawei | Zhang, Liangmao | Ahmad, Zahoor | Wu, Shuhang | Xie, Bing
Contamination of soil with heavy metals seriously harms the growth of crops. Silicon fertilizer is known to promote growth of crops and alleviate heavy metals stresses in vegetables. However, little is known about the effects of silicon fertilizer on pakchoi vegetable growth and soil microbial community in soil contaminated with multiple heavy metals. In order to elucidate this question, current study was designed to analyze the impact of different silicon fertilizer doses on the growth of pakchoi, heavy metals accumulation in pakchoi, and diversity and composition of bacterial community in heavy metals contaminated soil. Results of the study showed that, silicon fertilizer application significantly improved the yield of pakchoi and reduced the content of heavy metals in pakchoi. Moreover, the silicon fertilizer led to the heterogeneity of bacterial community structure in soil. Linear discriminant analysis (LDA) effect size (LEfSe) test showed the change of soil bacterial community structures under the higher silicon fertilizer doses (0.8–3.2%). Similarly, soil bacteria associated with heavy metal resistance and carbon/nitrogen metabolism showed a more active response to medium fertilizer dose (0.8% w/w). In addition, Mantel test and Redundancy analysis (RDA) showed that both the soil bacterial community structures and pakchoi growth were significantly correlated with soil EC, available K and pH. Study suggested that the application of silicon fertilizer provided richer bacteria associated with heavy metal resistance and plant growth, and more favorable soil physicochemical environment for the growth of pakchoi under multiple heavy metal contamination, and the impact was dependent on fertilizing dose.
Show more [+] Less [-]Elucidating mechanisms of immunotoxicity by benzotriazole ultraviolet stabilizers in zebrafish (Danio rerio): Implication of the AHR-IL17/IL22 immune pathway Full text
2020
Li, Zhitong | Liang, Xue-fang | Liu, Wang | Zhao, Yaqian | Yang, Huiting | Li, Wenjing | Adamovsky, Ondrej | Martyniuk, Christopher J.
Benzotriazole ultraviolet stabilizers (BUVSs) are widely used additives in industrial materials and personal care products that protect products from ultraviolet damage. Due to their high production volume and potential to bioaccumulate, BUVSs are an environmental pollutant of concern. In this study, juvenile zebrafish (Danio rerio) were exposed to 4 BUVSs (UV-234, UV-326, UV-329, and UV-P) at 10 and 100 μg/L for 28 d. BUVSs induced hepatic vacuolization and nuclei pyknosis in the liver following 100 μg/L UV-234 and UV-329 exposure. Transcriptomic analysis in the liver uncovered pathways related to inflammation that were affected by BUVSs. Based upon these data, we measured the expression levels of 9 genes involved in AHR-IL17/IL22 pathway in zebrafish larvae exposed to each BUVSs at one dose of either 10 or 100 μg/L for 6 days in a second set experiment. Transcript levels of interleukins il17a and il22 were decreased, while il6 mRNA was increased with exposure to UV-234, UV-329, and UV-P. No change to targeted transcripts was observed with UV-326 treatments. Moreover, cyp1a1 and ahr2 levels were increased in larvae treated with 100 μg/L UV-329 or UV-P. Consistent with expression data, protein abundance of IL22 was decreased by 29% with exposure to 100 μg/L UV-P. Taken together, these results demonstrate that exposure to different benzotriazole congeners may be associated with immunotoxicity in zebrafish through the AHR-IL17/IL22 pathway, and this may be associated with hepatic damage with prolonged exposures. This study provides new insight into unique pathways perturbed by specific BUVSs congeners.
Show more [+] Less [-]Background concentrations of trace metals As, Ba, Cd, Co, Cu, Ni, Pb, Se, and Zn in 214 Florida urban soils: Different cities and land uses Full text
2020
da Silva, Evandro B. | Gao, Peng | Xu, Min | Guan, Dongxing | Tang, Xianjin | Ma, Lena Q.
Soil contamination in urban environment by trace metals is of public concerns. For better risk assessment, it is important to determine their background concentrations in urban soils. For this study, we determined the background concentrations of 9 trace metals including As, Ba, Cd, Co, Cu, Ni, Pb, Se, and Zn in 214 urban soils in Florida from two large cities (Orlando and Tampa) and 4 small cities (Clay County, Ocala, Pensacola and West Palm Beach). The objectives were to determine: 1) total concentrations of trace metals in urban soils in cities of different size; 2) compare background concentrations to Florida Soil Cleanup Target Levels (FSCTLs); and 3) determine their distribution and variability in urban soils via multivariate statistical analysis. Elemental concentrations in urban soils were variable, with Pb being the highest in 5 cities (165–552 mg kg⁻¹) and Zn being the highest concentration in Tampa (1,000 mg kg⁻¹). Besides, the As and Pb concentrations in some soils exceeded the FSCTL for residential sites at 2.1 mg kg⁻¹ As and 400 mg kg⁻¹ Pb. Among the cities, Clay County and Orlando had the lowest concentrations for most elements, with Cd, Co, and As being the lowest while Ba, Pb and Zn being the highest. Among all values, geometric means were the lowest while 95th percentile was the highest for all metals. Most 95th percentile values were 2–3 folds higher than the GM data, with Pb presenting the greatest difference, being 4 times greater than GM value (58.9 vs. 13.6 mg kg⁻¹). Still they were lower than FSCTL, with As exceeding FSCTL for residential sites at 2.1 mg kg⁻¹. In addition, the linear discriminate analysis showed distinct separation among the cities: Ocala (Ba & Ni) and Pensacola (As & Pb) were distinctly different from each other and from other cities with higher metal concentrations. The large variations among elemental concentrations showed the importance to establish proper background concentrations of trace metals in urban soils.
Show more [+] Less [-]A stable simultaneous anammox, denitrifying anaerobic methane oxidation and denitrification process in integrated vertical constructed wetlands for slightly polluted wastewater Full text
2020
Huang, Tao | Liu, Wei | Zhang, Yi | Zhou, Qiaohong | Wu, Zhenbin | He, Feng
Anaerobic ammonium oxidation (anammox), denitrifying anaerobic methane oxidation bacteria (DAMO) have received great attention for their excellent performance in nitrogen removal. However, not much study focused on the co-existence of anammox, DAMO, and denitrification in constructed wetlands, not to mention the advantage of their application in mitigating the necessary byproduct nitrous oxide (N₂O), methane (CH₄) from the biodegradation process. In this study, the result indicated the construction of integrated vertical constructed wetlands (IVCWs) contributed to the high-efficient stable simultaneous anammox, DAMO and denitrification (SADD) process for the nutrients removal, with denitrification being the least contributor to nitrogen reduction. Besides the succession of SADD process was largely the driver for the variation of N₂O, CH₄ emission. The structural equation method (SEM) further suggested that the three biological pathways of qnorB/bacteria, archaea/qnorB, and anammox/nirK accounted for the N₂O production, as were top-controlled by mcrA/DAMO in IVCWs. Besides the anammox-associated nitrifier denitrification was the main source for N₂O production. And that the trade-off effect between the CH₄ and N₂O production was exerted by the DAMO, while the influence was far from satisfactory under the methane constraints.
Show more [+] Less [-]Influence of sulfur fertilization on CuO nanoparticles migration and transformation in soil pore water from the rice (Oryza sativa L.) rhizosphere Full text
2020
Sun, Lijuan | Xue, Yong | Peng, Cheng | Xu, Chen | Shi, Jiyan
The biogeochemical cycling of sulfur in soil is closely associated with the mobility and bioavailability of heavy metals; however the influence of sulfur on the behavior of metal-based nanoparticles has not yet been studied. The influence of S fertilizer (S⁰ and Na₂SO₄) applied in paddy soils on CuO NPs behavior in soil pore water was explored in the present study. Synchrotron-based techniques were applied to investigate the migration and speciation transformation of CuO NPs in soil pore water colloids. The application of sulfur fertilizer increased the zeta potential of soil colloids from the rice rhizosphere region and reduced the size of the colloids. Sulfur fertilization decreased the concentration of Cu in soil pore water in the rice rhizosphere region. S⁰ fertilizer reduced the Cu concentration in soil colloids (by 55.8%–73.5%), while Na₂SO₄ increased the Cu concentration in soil colloids (by 173.8%–265.1%). Sulfur fertilization changed the spatial distribution of Fe³⁺ and Cu²⁺ in colloids, making these ions more likely to be aggregated on the edges of soil colloids. Speciation transformation of CuO NPs happened during the process of migration. The main Cu speciation in the soil colloids were CuO NPs, Cu-Cysteine, Cu₂S and Cu-Citrate. Sulfur fertilization increased the proportion of Cu₂S (by 40.5%) in soil pore water colloids from the rice rhizosphere region, while the proportion of CuO NPs was reduced (by 18.4%). Sulfur fertilization changed the morphology and elementary composition of colloids in soil pore water, thus influencing the migration of CuO NPs in the soil column through soil colloids.
Show more [+] Less [-]Biofilms attached to Myriophyllum spicatum play a dominant role in nitrogen removal in constructed wetland mesocosms with submersed macrophytes: Evidence from 15N tracking, nitrogen budgets and metagenomics analyses Full text
2020
Mu, Xiaoying | Lv, Xiaoyang | Liu, Wei | Qiu, Changhao | Ma, You | Zhang, Songhe | Jeppesen, Erik
The mechanisms behind nitrogen removal by the submersed macrophyte-biofilm complex in wetlands remain to be fully elucidated. This study investigated the role of Myriophyllum spicatum and the biofilm on their leaves in nitrogen removal in mesocosm experiments. ¹⁵N tracking showed that 61.9% and 30% of the ¹⁵N, respectively, was removed from the system and assimilated by the macrophyte-biofilm complex after loading with 5.4 mg L⁻¹¹⁵N labelled NH₄⁺ for 17 days. Nitrogen budget results showed that about 0.2%, 0.2% and 3.6% of the nitrogen were emitted as water-, HCl- and NaOH-soluble nitrogen-gas species, respectively. Bacteria (76.7–91.8%) were the predominant domain in all samples, followed by eukaryotes (8.0–23.0%), archaea and viruses. Network analyses showed that there were positive- and negative-correlative relationships among nitrogen-cycling genes and nitrifiers and denitrifiers. Our data highlight the important role of biofilm on submersed macrophytes for nitrogen removal.
Show more [+] Less [-]Trophic transfer of persistent toxic substances through a coastal food web in Ulsan Bay, South Korea: Application of compound-specific isotope analysis of nitrogen in amino acids Full text
2020
An, Yoonyoung | Hong, Seongjin | Kim, Youngnam | Kim, Mungi | Choi, Bohyung | Won, Eun-Ji | Shin, Kyung-Hoon
Trophic magnification factor (TMF) of persistent toxic substances (PTSs: Hg, PCBs, PAHs, and styrene oligomers (SOs)) in a coastal food web (12 fish and four invertebrates) was determined in Ulsan Bay, South Korea. The nitrogen stable isotope ratios (δ¹⁵N) of amino acids [δ¹⁵NGₗᵤ₋Pₕₑ based on glutamic acid (δ¹⁵NGₗᵤ) and phenylalanine (δ¹⁵NPₕₑ)] were used to estimate the trophic position (TPGₗᵤ₋Pₕₑ) of organisms. The TPGₗᵤ₋Pₕₑ of organisms ranged from 1.64 to 3.69, which was lower than TP estimated by δ¹⁵N of bulk particulate organic matter (TPBᵤₗₖ: 2.46–4.21). Mercury and CB 138, 153, 187, and 180 were biomagnified through the whole food web (TMF > 1), while other PTSs, such as PAHs and SOs were not (biodilution of SOs firstly reported). In particular, the trophic transfer of PTSs was pronounced in the resident fish (e.g., rock bream, sea perch, Korean rockfish). Of note, CB 99, 101, 118, and 183 were additionally found to be biomagnifying PTSs in these species. Thus, fish residency appears to represent an important factor in determining the TMF of PTSs in the coastal environment. Overall, δ¹⁵NGₗᵤ₋Pₕₑ provided accurate TPs of organisms and could be applied to determine the trophic transfer of PTSs in coastal food webs.
Show more [+] Less [-]Time-dependent stress evidence in dynamic allocation of physiological metabolism of Nilaparvata lugens in response to elevated CO2 Full text
2020
Zhao, Mu-Hua | Zheng, Xiao-Xu | Liu, Jin-Ping | Zeng, Yun-Yun | Yang, Feng-Lian | Wu, Gang
To assess the time-dependent stress evidence in dynamic allocation of physiological metabolism of Nilaparvata lugens nymphs in response to elevated CO₂, we measured the time-dependent allocation of nutrient compositions and physiological metabolism in the bodies of N. lugens at 1h, 4h and 12h under elevated CO₂. Elevated CO₂ significantly increased the contents of nutrient compositions (protein, glucose and total amino acids) and catalase (CAT) enzyme activity in the body of N. lugens at 12h relative to 1h and 4h (P < 0.05). Significantly higher genes expression levels of acetylcholinesterase (AChE), heat shock protein (HSP70) and vitellogenin gene (vg) were observed in the body of N. lugens compared with those in ambient CO₂ at 4h (P < 0.05). These results showed that there was an instantaneous reaction of N. lugens nymphs to elevated CO₂, which indicated N. lugens may enhance stress defense response to future increasing CO₂ levels.
Show more [+] Less [-]