Refine search
Results 1821-1830 of 6,473
Atmospheric boundary layer turbulence structure for severe foggy haze episodes in north China in December 2016
2020
Li, Xin | Gao, Chloe Y. | Gao, Zhiqiu | Zhang, Xiaoye
This paper aims to identify the atmospheric boundary layer turbulence structure and its effect on severe foggy haze events frequently occurring in Northern China. We use data collected from a ground eddy covariance system, meteorology tower, and a PM₂.₅ collector in Baoding, China during December 2016. The data shows that 73.5% of PM₂.₅ concentration is greater than 100 μg m⁻³ with a maximum of 522 μg m⁻³. Analyses on vertical turbulence spectrum also reveal that 1) during the pollution period, lower wind can suppress large-scale turbulence eddies, which are more likely inhomogeneous, breaking into small-scale eddies, and 2) the air pollutant scattering effect for radiation could decrease the air temperature near the ground and generate weak vertical turbulence during the daytime. At night, air pollutants suppress the land surface cooling and decrease the air temperature difference as well as the vertical turbulence intensity difference. The vertical turbulence impact analysis reveals that the percentage of large-scale turbulence eddies can also change the atmospheric vertical mixing capacity. During the daytime, the air pollution evolution is controlled by the wind speed and vertical turbulence intensity. While at night, the vertical turbulence is weak and the atmospheric vertical mixing capacity is mainly controlled by the large-scale eddies’ percentage. The increased number of large-scale turbulence eddies led by low wind at night could increase the vertical mixing of air pollutants and decrease its concentration near the ground.
Show more [+] Less [-]Membrane Enhanced Bioaccessibility Extraction (MEBE) of hydrophobic soil pollutants – Using a semipermeable membrane for separating desorption medium and acceptor solvent
2020
Cocovi-Solberg, David J. | Kellner, Astrid | Schmidt, Stine N. | Loibner, Andreas P. | Miró, Manuel | Mayer, Philipp
Bioaccessibility extractions are increasingly applied to measure the fraction of pollutants in soil, sediment and biochar, which can be released under environmentally or physiologically relevant conditions. However, the bioaccessibility of hydrophobic organic chemicals (HOCs) can be markedly underestimated when the sink capacity of the extraction medium is insufficient. Here, a novel method called “Membrane Enhanced Bioaccessibility Extraction” (MEBE) applies a semipermeable membrane to physically separate an aqueous desorption medium that sets the desorption conditions from an organic medium that serves as acceptor phase and infinite sink. The specific MEBE method combines HOC (1) desorption into a 2-hydroxypropyl-β-cyclodextrin solution, (2) transfer through a low-density polyethylene (LDPE) membrane and (3) release into ethanol, serving as analytical acceptor phase. The surface to volume ratio within the LDPE membrane is maximized for rapid depletion of desorbed molecules, and the capacity ratio between the acceptor phase and the environmental sample is maximized to achieve infinite sink conditions. Several experiments were conducted for developing, optimizing and pre-testing the method, which was then applied to four soils polluted with polycyclic aromatic hydrocarbons. MEBE minimized sample preparation and yielded a solvent extract readily analyzable by HPLC. This study focused on the proof-of-principle testing of the MEBE concept, which now can be extended and applied to other samples and desorption media.
Show more [+] Less [-]Deoxynivalenol induced spermatogenesis disorder by blood-testis barrier disruption associated with testosterone deficiency and inflammation in mice
2020
Cao, Zheng | Huang, Wanyue | Sun, Yiran | Li, Yanfei
Deoxynivalenol (DON) is an unavoidable cereal crops contaminants and environmental pollutants, which seriously threated the health of human and animal. DON has been reported to exert significant toxicity effects on spermatogenesis, but the underlying mechanisms remain largely inconclusive. The blood-testis barrier (BTB) provides a specialized biochemical microenvironment for maintaining spermatogenesis. Thus, we hypothesized that DON could impair BTB and lead to spermatogenesis disorder. To confirm this hypothesis, sixty male mice were intragastrically administered with 0, 1.2, 2.4 and 4.8 mg/kg body weight DON for 28 days, and several important observations were obtained in present study. First, we found that DON induced spermatogenesis disorder, reflected by the declines of sperm concentration and quality, sperm ultrastructural damage as well as seminiferous tubular damage. Then, we proved that DON induced BTB disruption as well as decreased the expressions of BTB junction proteins, including Occludin, Connexin 43 and N-cadherin. Finally, the present study showed that DON induced inflammation and inhibited T biosynthesis in testis of mice. These results revealed that DON induced spermatogenesis disorder by BTB disruption associated with testosterone deficiency and inflammation in mice, which shed a new light on the potential mechanisms of reproductive toxicity induced by DON.
Show more [+] Less [-]Monitoring polymer degradation under different conditions in the marine environment
2020
Beltrán-Sanahuja, Ana | Casado-Coy, Nuria | Simó-Cabrera, Lorena | Sanz-Lázaro, Carlos
The perdurability of plastics in the environment is one of the major concerns of plastic pollution and, as a consequence, oceans are accumulating large amounts of plastic. The degradation of conventional and biobased materials was evaluated through a laboratory experiment for a year simulating four different conditions in the marine environment. The water column environmental compartment was simulated under euphotic and aphotic (with and without light availability) conditions. The seafloor environmental compartment was simulated with sediment under non-polluted and polluted conditions. By combining weight loss (%), spectroscopic and thermal analyses, the degradation patterns regarding the polymer structure were assessed. The studied biobased materials were polylactic acid (PLA) based materials and showed higher degradability than conventional ones. The weight loss of conventional materials was not influenced by the water column or sediment, while in PLA-based materials, the degradation rates were ca. 5 times greater in the sediment than in the water column. The absorbance (Abs) value at 3400 cm⁻¹ for polyethylene terephthalate (PET), and carbonyl (CO) index for PET and PLA could be useful to detect early signs of degradation. The crystallization index could be a useful parameter to discriminate degradation stages. The obtained results highlight the different degradability rates of materials depending on the specific environmental marine conditions.
Show more [+] Less [-]Determination of non-extractable residues in soils: Towards a standardised approach
2020
Loeffler, Dirk | Hatz, Annika | Albrecht, Dinah | Fligg, Marvin | Hogeback, Jens | Ternes, Thomas A.
After exposure of soils to anthropogenic organic chemicals non-extractable residues (NER) can be formed. The quantitative proportion of a compound which remains non-extractable is operationally defined by the extraction procedure employed and can be quantified only when using isotope labelled compounds (e.g. ¹⁴C or ¹³C). In Germany and the EU, there is no standardised procedure, how to determine NER, especially when different legal regulations apply. Consequently, the comparability of NER data is low. Hence, a major task of this study was the development of a general approach for the quantification of non-extractable residues (NER) in soils using radiotracer analysis.For that, extraction efficiencies were determined for 42 non-labelled organic chemicals spiked onto 3 soils applying a number of extraction techniques and conditions, developing an extraction procedure which provides high extraction efficiencies and a low variability for a broad spectrum of analytes.Additionally, NER generated within soil transformation studies according to OECD 307 using ¹⁴C-triclosan, ¹⁴C-fenoxycarb and ¹⁴C-acetaminophen were analysed using sequential batch extraction and pressurised liquid extraction (PLE). Depending on the extraction procedure used, the NER fraction related to ¹⁴C-triclosan in a soil varied greatly between 96% and 28%.In this study a widely universal extraction procedure was developed to improve the comparability of the NER data and limit overestimation of NER, which can be of enormous consequence for the assessment of persistence and environmental risk of organic chemicals. Furthermore, silylation, EDTA-extraction and HCl-treatment were compared regarding a further analysis of NER using radiotracer analysis.
Show more [+] Less [-]Platinum group elements study in automobile catalysts and exhaust gas samples
2020
Omrani, Mehrazin | Goriaux, Mathieu | Liu, Yao | Martinet, Simon | Jean-Soro, Liliane | Ruban, Véronique
Platinum-Group Elements (PGEs, i.e. platinum; Pt, palladium; Pd and rhodium; Rh) are extensively employed in the production of automotive catalytic converters to catalyze and control harmful emissions from exhaust fumes. But catalytic converters wear out over time and the emission of PGEs along with the exhaust fumes are nowadays known to be the main reason of the presence of PGEs in urban environments. PGEs contents were studied on three gasoline 3-way catalytic convertors with low, medium and high kilometers. PGEs emission factors via exhaust gases from Euro 3, 4, 5 and 6 gasoline and diesel vehicles, were monitored using catalytic converters. Results show variable content for PGEs for the three converters, in the ranges of 6–511, 0.5–2507 and 0.1–312 mg kg⁻¹ for Pt, Pd and Rh respectively. PGEs contents in different catalyst supports show the replacement of Pt by Pd in more recent converters. Analysis of the exhaust gas shows that catalytic converters expel up to 36.5 ± 3.8 ng km⁻¹ of Pt, 8.9 ± 1.1 ng km⁻¹ of Pd and 14.1 ± 1.5 ng km⁻¹ of Rh. Higher emissions of PGEs have been observed by gasoline Euro 3 vehicle, possibly due to the older technology of motorization and of the catalytic converter in this vehicle. Euro 3 and 4 diesel vehicles seem to emit more PGEs during urban cycles. Emission of PGEs has been also observed during the cold start of the majority of vehicles which seems to be the result of incomplete combustion during the rise of temperature in the engine. Higher PGEs emissions were also observed during motorway cycles in newer (Euro 4 and 5) petrol and diesel vehicles, conceivably due to the greater combustion as the engine speeds up during this cycle.
Show more [+] Less [-]Effect of ammonia stress on carbon metabolism in tolerant aquatic plant—Myriophyllum aquaticum
2020
Gao, Jingqing | Liu, Lina | Ma, Na | Yang, Jiao | Dong, Zekun | Zhang, Jingshen | Zhang, Jinliang | Cai, Ming
In this study, the tips of Myriophyllum aquaticum (M. aquaticum) plants were planted in open-top plastic bins and treated by simulated wastewater with various ammonium-N concentrations for three weeks. The contents of related carbohydrates and key enzyme activities of carbon metabolism were measured, and the mechanisms of carbon metabolism regulation of the ammonia tolerant plant M. aquaticum under different ammonium-N levels were investigated. The decrease in total nonstructural carbohydrates, soluble sugars, sucrose, fructose, reducing sugar and starch content of M. aquaticum were induced after treatment with ammonium-N during the entire stress process. This finding showed that M. aquaticum consumed a lot of carbohydrates to provide energy during the detoxification process of ammonia nitrogen. Moreover, ammonia-N treatment led to the increase in the activitives of invertase (INV) and sucrose synthase (SS), which contributed to breaking down more sucrose to provide substance and energy for plant cells. Meanwhile, the sucrose phosphate synthase (SPS) activity was also enhanced under stress of high concentrations of ammonium-N, especially on day 21. The result indicated that under high-concentration ammonium-N stress, SPS activity can be significantly stimulated by regulating carbon metabolism of M. aquaticum, thereby accumulating sucrose in the plant body. Taken together, M. aquaticum can regulate the transformation of related carbohydrates in vivo by highly efficient expression of INV, SPS and SS, and effectively regulate the osmotic potential, thereby delaying the toxicity of ammonia nitrogen and improving the resistance to stress. It is very important to study carbon metabolism under ammonia stress to understand the ammonia nitrogen tolerance mechanism of M. aquaticum.
Show more [+] Less [-]Edaphic factors influencing vegetation colonization and encroachment on arsenical gold mine tailings near Sudbury, Ontario
2020
Munford, Kimber E. | Watmough, Shaun A. | Rivest, Maxime | Poulain, Alexandre | Basiliko, Nathan | Mykytczuk, Nadia C.S.
Mine tailings are found worldwide and can have significant impacts on ecosystem and human health. In this study, natural vegetation patterns on arsenical (As) gold (Au) mine tailings located in Sudbury, Ontario were assessed using transects located at the edge of the tailings and on the tailings. Vegetation communities were significantly different between the edge and open tailings areas of the site. Arsenic concentrations in both areas were extremely variable (from 285-17,567 mg/kg) but were not significantly correlated with vegetation diversity at the site. Nutrients (carbon (C), phosphorus (P)) and organic matter concentrations were associated with higher diversity and with the presence of climax vegetation on the tailings, but there were no significant relationships between tailings chemistry and vegetation indices on the edge. Encroachment onto the tailings from the edge occurred in conventional succession patterns, with a clear gradient from grasses (Agrostis gigantea) to trees such as Picea glauca. On the tailings, a nucleation pattern was visible, distinct from conventional succession. Trees and shrubs such as Betula papyrifera and Diervilla lonicera were associated with higher diversity and higher nutrient concentrations in the underlying tailings, whereas grasses such as A. gigantea were not. We concluded that at all areas of the site, vegetation - particularly trees - was facilitating amelioration of the underlying tailings. Despite high concentrations of As, nutrients appeared to have a greater influence than metals on vegetation diversity.
Show more [+] Less [-]Degradation of glyphosate in a Colombian soil is influenced by temperature, total organic carbon content and pH
2020
Muskus, Angelica M. | Krauss, Martin | Miltner, Anja | Hamer, Ute | Nowak, Karolina M.
Glyphosate is one of the most used herbicides in the world. The fate of glyphosate in tropical soils may be different from that in soils from temperate regions. In particular, the amounts and types of non-extractable residues (NER) may differ considerably, resulting in different relative contributions of xenoNER (sorbed and sequestered parent compound) and bioNER (biomass residues of degraders). In addition, environmental conditions and agricultural practices leading to total organic carbon (TOC) or pH variation can alter the degradation of glyphosate. The aim of this study is thus to investigate how the glyphosate degradation and turnover are influenced by varying temperature, pH and TOC of sandy loam soil from Colombia. The pH or TOC of a Colombian soil was modified to yield five treatments: control (pH 7.0, TOC 3%), 4% TOC, 5% TOC, pH 6.5, and pH 5.5. Each treatment received 50 mg kg⁻¹ of ¹³C₃¹⁵N-glyphosate and was incubated at 10 °C, 20 °C and 30 °C for 40 days. Rising temperature increased the mineralization of ¹³C₃¹⁵N-glyphosate from 13 to 20% (10 °C) to 32–39% (20 °C) and 41–51% (30 °C) and decreased the amounts of extractable ¹³C₃¹⁵N-glyphosate after 40 days of incubation from 13 to 26% (10 °C) to 4.6–12% (20 °C) and 1.2–3.2% (30 °C). Extractable ¹³C₃¹⁵N-glyphosate increased with higher TOC and higher pH. Total ¹³C-NER were similar in all treatments and at all temperatures (47%–60%), indicating that none of the factors studied affected the amount of total ¹³C-NER. However, ¹³C-bioNER dominated within the ¹³C-NER pool in the control and the 4% TOC treatment (76–88% of total ¹³C-NER at 20 °C and 30 °C), whereas in soil with 5% TOC and pH 6.5 or 5.5 ¹³C-bioNER were lower (47–61% at 20 °C and 30 °C). In contrast, the ¹⁵N-bioNER pool was small (between 14 and 39% of the ¹⁵N-NER). Thus, more than 60% of ¹⁵N-NER is potentially hazardous xenobiotic NER which need careful attention in the future.
Show more [+] Less [-]Application of solid waste of ductile cast iron industry for treatment of wastewater contaminated by reactive blue dye via appropriate nano-porous magnesium oxide
2020
Pourrahim, Solmaz | Salem, Amin | Salem, Shiva | Tavangar, Reza
The solid waste of ductile iron industry, which contains at least 88.0% magnesium oxide, is one of the toxic materials, leading to land contamination. On the other hand, the removal of reactive dyes from wastewaters is difficult required effective adsorbent like nano-porous MgO. The novelty of present investigation is based on nano-porous magnesium oxide production by precipitation from the solid waste to treat the wastewaters contaminated by reactive dye which is abundantly used in the textile industry. In order to improve the adsorptive properties of extracted MgO powder, the combinations of surfactants, containing cetyltrimethylammonium bromide (CTAB), sodium dodecyl sulfate (SDS) and polyoxyethylene octyl phenyl ether (TX100) were applied based on the mixture design algorithm in the precipitation. The effects of processing factors such as surfactant composition, powder calcination temperature, surfactant dose and pH were evaluated on the removal efficiency. The results revolved that the combination of SDS and TX100, 1:1, plays an effective role in the production of particles with the appropriate average pore size, 16 nm. The adsorbent prepared in the optimum condition indicated a significant affinity for the removal of reactive dye which shows relatively pH-independent efficiency in the range of 3–9. The applied producer for fabrication of adsorbent eventually overcomes the pH-dependent problem for the toxic dye uptake, leading to produce the adsorbent with maximal adsorption capacity of 1000 mg g−1.
Show more [+] Less [-]