Refine search
Results 1821-1830 of 8,010
Occurrence of parabens in outdoor environments: Implications for human exposure assessment Full text
2021
Chen, Mei-Hong | Yu, Bo | Zhang, Zi-Feng | Ma, Wanli
Parabens (PBs) are widely used as preservatives in food, pharmaceuticals and personal care products (PCPs). Due to their potential characteristics, similar to endocrine-disrupting compounds, their safety in our daily products and frequent exposure to human health have become public concerns. Nevertheless, little information is available about the occurrence of PBs in outdoor environments and their implications for human exposure. In this study, seven pairs of gas- and particle-phase air samples and 48 soil samples from Harbin City, China, were collected for the analysis of eight typical PBs (including methyl-paraben, ethyl-paraben, propyl-paraben, isopropyl-paraben, butyl-paraben, isobutyl-paraben, benzyl-paraben, and heptyl-paraben), which have been frequently selected as target compounds in previous studies. Concentrations of ∑₈PBs in outdoor air samples were 253–1540 pg/m³ with a median of 555 pg/m³. The results of the gas-particle partitioning indicated that PBs had not reached equilibrium between the gas phase and particle phase. Concentrations of ∑₈PBs in the soil samples were <LOQ-5530 ng/kg dw. Higher concentrations of PBs were observed in soils from commercial and residential areas with extensive anthropogenic activities. Based on the inhalation rate of air and ingestion rate of soil, the estimated daily intake (EDI) was calculated. The EDI values (EDIₐᵢᵣ + EDIₛₒᵢₗ) for male adults, female adults and children were comparable, with mean values of 2.74 × 10⁻², 3.21 × 10⁻² and 2.70 × 10⁻² ng/kg-bw/day, respectively. All EDIs were much lower than the daily acceptable intake, indicating lower health risk with PB occurrence in outdoor environments. Finally, the total EDI from all external exposure routes (outdoor air, indoor air, soil, indoor dust, foodstuffs, pharmaceuticals and PCPs) was calculated for the first time. The total EDI was not consistent with that of the internal exposure, which provided new insight into future studies for human exposure assessment.
Show more [+] Less [-]Atmospheric mercury pollution caused by fluorescent lamp manufacturing and the associated human health risk in a large industrial and commercial city Full text
2021
Luo, Qing | Ren, Yuxuan | Sun, Zehang | Li, Yu | Li, Bing | Yang, Sen | Zhang, Wanpeng | Hu, Yuanan | Cheng, Hefa
Although already eliminated in most industrial processes, mercury, as an essential ingredient in all energy-efficient lighting technologies, is still used in fluorescent lamp manufacturing. This study was conducted to investigate the atmospheric pollution caused by fluorescent lamp production and assess the associated public health risk in a large industrial and commercial city of south China, Zhongshan, which is a major production hub of lighting products. Concentrations of total gaseous mercury (TGM) in the atmosphere were measured over a total of 342 sites in the industrial, commercial, and residential areas. The average levels of TGM in the industrial, commercial, and residential areas prior to the landing of a typhoon were 12 ± 11, 3.6 ± 2.1, and 2.7 ± 1.3 ng⋅m⁻³, respectively. TGM concentrations in the industrial areas exhibited significant diurnal variation, with levels in the working hours being much higher than those in the non-working hours, which indicates that the high atmospheric mercury concentrations were contributed by local emissions, instead of regional transport. Most fluorescent lamp manufacturing activities in the city were shut down during a typhoon event, which resulted in a significant reduction in the average TGM level (down to 1.6 ± 1.8 ng⋅m⁻³) and rendered the difference in the average TGM levels in the industrial areas no longer significant between the working and non-working hours. Elevated TGM levels (up to 49 ng⋅m⁻³) were found near clusters of small-scale fluorescent lamp workshops in both industrial and commercial areas, which is indicative of significant emissions of mercury vapor resulting from obsolete equipment and production technologies. No significant non-carcinogenic risk was found for the general residents in the sampling area over the study period, while the risk for the workers in the fluorescent lamp manufacturing facilities and workshops could be higher. These findings indicate that fluorescent lamp manufacturing in the developing countries is a major source of atmospheric mercury.
Show more [+] Less [-]Hazardous pollutants in the environment: Fish host-parasite interactions and bioaccumulation of polychlorinated biphenyls Full text
2021
Brázová, Tímea | Miklisová, Dana | Barčák, Daniel | Uhrovič, Dalibor | Šalamún, Peter | Orosová, Martina | Oros, Mikuláš
The present paper reports on the interrelationships of fish, parasites and the bioaccumulation of hazardous organic compounds in the Zemplínska Šírava water reservoir in eastern Slovakia, which is heavily polluted with polychlorinated biphenyls (PCBs). The concentrations of these contaminants were measured in various fish matrices (dorsal and abdominal muscle tissues, hepatopancreas, intestine wall and adipose tissue) of the freshwater bream, Abramis brama (Cyprinidae), and in its intestinal parasite Caryophyllaeus laticeps (Cestoda), which was used for the first time as a model for a PCB bioaccumulation study. Regarding the fish, the highest concentrations of PCBs were found in the intestine, followed by hepatopancreas and muscle tissues. The amounts of PCBs were higher in abdominal muscles than in their dorsal parts. Concentrations of ∑PCBs above the limits set by European regulations were detected in both muscle parts in the fish, confirming the persistent unfavorable conditions in this locality and high risk for biota and humans. Based on bioconcentration factor values (BCFs), PCBs reached much higher levels in cestodes compared to bream matrices. Some significant differences in PCB amounts between infected and uninfected bream were determined. Fulton's condition factor (CF) significantly differed in infected and non-infected fish (p ˂ 0.05), with CF values surprisingly lower in fish free of parasites compared to parasitized fish, which suggests a “mutualistic” relationship between the parasite and its host.
Show more [+] Less [-]Fate of antibiotic resistance genes in industrial-scale rapid composting of pharmaceutical fermentation residue: The role implications of microbial community structure and mobile genetic elements Full text
2021
Tang, Zhurui | Huang, Caihong | Tian, Yu | Xi, Beidou | Guo, Wei | Tan, Wenbing
Composting is an effective technology to recycle organic solid waste as a green resource. However, pharmaceutical fermentation residue (PFR) contains a variety of pollutants, such as residual drug and antibiotic resistance genes (ARGs), which limits the green cycle of using PFR as a resource. To promote the green recycling of PFR, this study evaluated the characteristics of abundance and the response relationship of ARGs during the process of rapid composting. Different rapid composting samples were collected, and DNA was extracted from each sample. The absolute abundance of ARGs was quantified using quantitative PCR, and the microbial community structure was identified using high-throughput sequencing. The results showed that ermB, ermF, tetM and tetQ were reduced by 89.55%, 15.10%, 89.55%, and 82.30% respectively, and only sul2 increased by approximately 5-fold. Mobile genetic elements (MGEs) directly affected the changes in abundance of ARGs. As typical MGEs, intl1 and intl2 decreased by 3.40% and 54.32%, respectively. Potential host microorganisms important factors that affected ARGs and MGEs. A network analysis indicated that the potential host microorganisms were primarily distributed in Firmicutes and Proteobacteria at the phylum level. The pH and content of water-extractable sulfur were physicochemical parameters that substantially affected the abundance of potential host microorganisms through redundancy analysis. Industrial-scale rapid composting could reduce the number of ARGs and shorten the composting cycle, which merits its popularization and application.
Show more [+] Less [-]Using hydrogen peroxide to control cyanobacterial blooms: A mesocosm study focused on the effects of algal density in Lake Chaohu, China Full text
2021
Chen, Chao | Wang, Yiyao | Chen, Kaining | Shi, Xiaoli | Yang, Gang
The application of hydrogen peroxide (H₂O₂) to control harmful algal blooms is affected by algal density and species. In the present study, a simulation field study was carried out to evaluate the removal of cyanobacteria with high algal density (chlorophyll a of approximately 220–250 μg/L) and low algal density (chlorophyll a of approximately 30–50 μg/L) using 10, 20 mg/L H₂O₂ and 5 mg/L H₂O₂. The dynamics of algal biomass, nutrients, microcystins, phytoplankton, and zooplankton were measured within 7 d. The results showed that 5 mg/L H₂O₂ effectively eliminated algal biomass (measured as chlorophyll a and phycocyanin) and inhibited 50% of the photosynthetic activity of the cyanobacteria at 7 d in the low algal cell density group, while the same inhibition rate was observed in the high algal cell density group when the H₂O₂ was 20 mg/L. However, using a high dosage of H₂O₂, such as 10 mg/L, to suppress cyanobacteria with high biomass could result in a dramatic increase in nutrients and microcystins in the water column. The portion of eukaryotic algae, such as Chlorophyta, Bacillariophyta and Euglenophyta, in the phytoplankton community increased with increasing H₂O₂ concentrations; moreover, the dominant species of cyanobacteria changed from the nontoxic genus Dactylococcopsis to the toxic genus Oscillatoria, which may result in acute toxicity to zooplankton. Our results demonstrated that the application of H₂O₂ to control cyanobacterial blooms at the early stage when algal cell density was low posed less potential ecological risks and may have increased the diversity of the phytoplankton community.
Show more [+] Less [-]Wheat-associated Pseudomonas taiwanensis WRS8 reduces cadmium uptake by increasing root surface cadmium adsorption and decreasing cadmium uptake and transport related gene expression in wheat Full text
2021
Cheng, Cheng | Wang, Qi | Wang, Qingxiang | He, Lin-Yan | Sheng, Xia-Fang
Metal-resistant bacteria can reduce Cd accumulation in plants, but mechanisms underlying this effect are poorly understood. In this study, a highly effective Cd-resistant WRS8 strain was obtained from the rhizoshere soil of Triticum aestivum L. Yangmai-13 and identified as Pseudomonas taiwanensis based on 16S rRNA gene sequence analysis. Strain WRS8 was investigated for its effects on Cd availability and wheat tissue Cd contents and the related mechanisms using a hydroponic culture experiment. In strain WRS8-inoculated solution, the Cd concentration reduced and the pH and cell-adsorbed Cd increased with time. Strain WRS8 increased the wheat root and above-ground tissue dry weights by 11–36% compared to the controls. In strain WRS8-inoculated wheat plants, the Cd contents of the roots and above-ground tissues decreased by 78–85% and 88–94% and the Cd bioconcentration and translocation factors decreased by 78–85% and 46–58% at days 3 and 10, respectively, compared with the controls. The root surface-adsorbed Cd contents increased by 99–121% in the WRS8 strain-inoculated wheat plants at days 3 and 10 compared to the controls. Furthermore, strain WRS8 colonized the wheat root surfaces and interiors and reduced the expression levels of the LCT1 and HMA2 genes involved in Cd accumulation and transport in wheat roots by 46% and 30%, respectively, compared to the controls. In the Cd-contaminated soils, strain WRS8 significantly reduced the available Cd content by 20–24% and increased the pH compared to the controls. These findings showed the important role of strain WRS8 in reducing solution and soil Cd availability and suggested that strain WRS8 reduced the wheat tissue Cd accumulation by increasing root surface Cd adsorption and decreasing wheat root Cd uptake and transport-related gene expression and may provide a new and effective wheat rhizobacteria-enhanced approach for reducing wheat Cd uptake in Cd-polluted environments.
Show more [+] Less [-]Polycyclic aromatic hydrocarbon contamination along roads based on levels on vehicle window films Full text
2021
Zhang, Weiwei | Su, Penghao | Tomy, Gregg T. | Sun, Dan | Yin, Fang | Chen, Lisu | Ding, Yongsheng | Li, Yifan | Feng, Daolun
Vehicular emissions are known to be major contributors of airborne polycyclic aromatic hydrocarbons (PAHs) in cities. In order to assess the long-term contamination of PAHs along roads, we collected organic films from vehicle windows (26 private cars and 4 buses, in Shanghai, China) and used mathematical models to convert the film-bound PAH concentrations to the airborne PAH concentrations. The field measurements of airborne PAHs revealed that the partitioning and Level III fugacity model was suitable to estimate the airborne concentrations of high and low volatile PAHs (expect for naphthalene), respectively. The total airborne PAH concentrations along roads in Shanghai ranged from 0.83 to 3.37 μg m⁻³ and the incremental lifetime cancer risks (ILCRₜₒₜₐₗ) by exposure to PAHs along roads were greater than the USEPA lower guideline of 10⁻⁶, indicating non-negligible carcinogenic risks to drivers and passengers, especially via ingestion processes. This study provided a practicable method to investigate long-term air contamination of PAHs in vehicles and along roads based on film-bound PAH on vehicle windows. In addition, it was also possible to investigate the health risk in vehicles as a result of exposure to PAHs. Comparisons of PAHs between roads and shipping lanes also facilitated the delineation of vehicular and shipping PAH inventories.A capsule that summarizes the main finding of the work: Investigating film-bound PAH on vehicle windows is a practicable pathway to investigate the long-term contamination of PAHs in vehicles and along roads. This method can not only simplify the sampling processes, but the model calculations. The results also enabled investigations into ILCR in vehicles and specified source apportionment of traffic PAHs.
Show more [+] Less [-]Bone-derived biochar improved soil quality and reduced Cd and Zn phytoavailability in a multi-metal contaminated mining soil Full text
2021
Azeem, Muhammad | Ali, Amjad | Arockiam Jeyasundar, Parimala Gnana Soundari | Li, Yiman | Abdelrahman, Hamada | Latif, Abdul | Li, Ronghua | Basta, Nicholas | Li, Gang | Shaheen, Sabry M. | Rinklebe, Jörg | Zhang, Zenqqiang
Reusing by-products such as cow bones in agriculture can be achieved thorough pyrolysis. The potential of bone-derived biochar as a promising material for metals immobilization in contaminated mining soils has not yet been sufficiently explored. Therefore, cow bones were used as biochar feedstock were pyrolyzed at 500 °C (CBL) and 800 °C (CBH) and. The two biochars were applied to a mine contaminated soil at 0 (control), 2.5, 5 and 10%, w/w, dosages; then, the soils were incubated and cultivated by maize in the greenhouse. Cadmium (Cd) and zinc (Zn) bioavailability and their sequentially extracted fractions (acid soluble, reducible, oxidizable, and residual fraction), soil microbial function, and plant health attributes were analyzed after maize harvesting. Bone-derived biochar enhanced the content of dissolved organic carbon (up to 74%), total nitrogen (up to 26%), and total phosphorus (up to 27%) in the soil and improved the plant growth up to 55%, as compared to the control. The addition of CBL altered the acid soluble fraction of both metals to the residual fraction and, thus, reduced the content of Zn (55 and 40%) and Cd (57 and 67%) in the maize roots and shoots, respectively as compared to the control. The CBL enhanced the β-glucosidase (51%) and alkaline phosphatase activities (71%) at the lower doses (2.5–5%) as compared to control, while the activities of these enzymes decreased with the higher application doses. Also, CBL improved the antioxidants activity and maize growth at the 2.5–5% application rate. However, the activity of the dehydrogenase significantly decreased (77%), particularly with CBH. We conclude that CBL, applied at 2.5–5% dose, can be utilized as a potential low cost and environmental friendly amendment for stabilization of toxic metals in contaminated mining soils and producing food/feed/biofuel crops with lower metal content.
Show more [+] Less [-]Microplastics in the endangered Indo-Pacific humpback dolphins (Sousa chinensis) from the Pearl River Estuary, China Full text
2021
Zhang, Xiyang | Luo, Dingyu | Yu, Ri-Qing | Xie, Zhenhui | He, Lei | Wu, Yuping
Microplastic pollution is a growing concern worldwide. Despite numerous studies showing the occurrence of microplastics in low-trophic level aquatic organisms, microplastic ingestion and contamination in cetaceans, especially those from Asian waters, has been rarely recorded. Here, we investigated stomach microplastic pollution in twelve Indo-Pacific humpback dolphins stranded along the Pearl River Estuary (PRE), China. We also compared microplastic abundances in dolphins stranded near populated urban areas (ZH, n = 6) with those stranded near rural areas (JM, n = 6). Microplastics were detected in all samples, with abundance ranging widely from 11 to 145 items individual⁻¹ (mean ± SD, 53 ± 35.2). Major microplastics were polypropylene and polyethylene fibers, with the size mostly ranging from 1 to 5 mm and the dominant colors of white or transparent. Humpback dolphins from ZH (73 ± 36.8 items individual⁻¹) exhibited a significantly higher average microplastic abundance than those from JM (33 ± 18.3 items individual⁻¹, p < 0.05). In particular, the highest microplastic concentration was identified in the dolphin (SC-ZH01) stranded near the mouth of the Pearl River, whereas the dolphin (SC-JM04) collected at the rural site contained the lowest concentration of microplastics, suggesting the important influence of land-based human activities on the accumulation of microplastics in the PRE. The identification of varied microplastic polymers indicated their complex source scenarios. This study suggests that, as one of top predators in the potential microplastic food chains, this cetacean species could likely serve as an endpoint biomonitoring species of microplastic pollution in the PRE or other similar estuarine ecosystems. Our results highlight the need for more studies towards better understanding the potential impacts of microplastics on this endangered species.
Show more [+] Less [-]Intrauterine antibiotic exposure affected neonatal gut bacteria and infant growth speed Full text
2021
Zhou, Yuhan | Ma, Wenjuan | Zeng, Yu | Yan, Chonghuai | Zhao, Yingya | Wang, Pengpeng | Shi, Huijing | Lu, Wenwei | Zhang, Yunhui
Although abundant evidence has suggested that early-life antibiotic exposure was associated with adipogenesis later in life, limited data were available on the effect of intrauterine antibiotic exposure on infant growth and growth speed. Additionally, few studies have investigated the role of the neonatal gut microbiota in the above association. In this study, we examined the association between intrauterine cumulative antibiotic exposure and infant growth and explored the potential role of the neonatal gut microbiota in the association. 295 mother-child pairs from the Shanghai Maternal-Child Pairs Cohort (MCPC) study were included, and meconium samples and infant growth measurements were assessed. Z-scores of length-for-age, weight-for-age (weight-for-age), and body mass index (BMI)-for-age (BMI-for-age) were calculated. Eighteen common antibiotics were measured in meconium. Multivariable linear regression models were applied to test the interrelationships between antibiotic exposure, diversity indicators, and the relative abundance of selected bacterial taxa from phylum to genus levels from least absolute shrinkage and selection operator (LASSO) and infant growth indicators. The detection rates of the 18 antibiotics, except for chlortetracycline, penicillin, and chloramphenicol, were below 10 %. Penicillin was found to be positively associated with infant growth at birth and with growth speed from 2 to 6 months. The Pielou and Simpson indexes were negatively associated with meconium penicillin. Nominally significant associations between penicillin and the relative abundances of several bacterial taxa from the phyla Proteobacteria, Bacteroidetes, and Firmicutes were found. The Pielou and Simpson indexes were also found to be negatively associated with infant growth. Among taxa selected from LASSO regression, the relative abundances of the phyla Actinobacteria and Firmicutes and order Bifidobacteriales were found to be significantly associated with weight and BMI growth speeds from 2 to 6 months. In conclusion, intrauterine antibiotic exposure can affect infant growth. The neonatal gut microbiota might play a role in the abovementioned association.
Show more [+] Less [-]