Refine search
Results 1831-1840 of 6,536
SFPQ is involved in regulating arsenic-induced oxidative stress by interacting with the miRNA-induced silencing complexes
2020
Guo, Ping | Chen, Shen | Li, Daochuan | Zhang, Jinmiao | Luo, Jiao | Zhang, Aihua | Yu, Dianke | Bloom, Michael S. | Chen, Liping | Chen, Wen
Arsenic exposure contributed to the development of human diseases. Arsenic exerted multiple organ toxicities mainly by triggering oxidative stress. However, the signaling pathway underlying oxidative stress is unclear. We previously found that the expression of SFPQ, a splicing factor, was positively associated with urinary arsenic concentration in an arsenic-exposed population, suggesting an oxidative stress regulatory role for SFPQ. To test this hypothesis, we established cell models of oxidative stress in human hepatocyte cells (L02) treated with NaAsO₂. Reactive oxygen species (ROS) synthesis displayed a time- and dose-dependent increase with NaAsO₂ treatment. SFPQ suppression resulted in a 36%–53% decrease in ROS generation, leading to enhanced cellular damage determined by 8-OHdG, comet tail moment, and micronucleus analysis. Particularly, SFPQ deficiency attenuated expression of the oxidase genes DUOX1, DUOX2, NCF2, and NOX2. A fluorescent-based RNA electrophoretic mobility shift assay (FREMSA) and dual-luciferase reporter system revealed that miR-92b-5p targeted DUOX2 mRNA degradation. An RNA immunoprecipitation assay showed an interaction between SFPQ and miR-92b-5p of the miRNA-induced silencing complex (miRISC). Notably, NaAsO₂ treatment diminished the interaction between SFPQ and miR92b-5p, accompanied by decreased binding between miR-92b-5p and 3′-UTR of DUOX2. However, SFPQ deficiency suppressed the dissociation of miR-92b-5p from 3′-UTR of DUOX2, indicating that miR-92b-5p regulated the SFPQ-dependent DUOX2 expression. Taken together, we reveal that SFPQ responds to arsenic-induced oxidative stress by interacting with the miRISC. These findings offer new insight into the potential role of SFPQ in regulating cellular stress response.
Show more [+] Less [-]Extracellular polymeric substances alter cell surface properties, toxicity, and accumulation of arsenic in Synechocystis PCC6803
2020
Naveed, Sadiq | Yu, Qingnan | Zhang, Chunhua | Ge, Ying
Arsenic (As) contamination of water poses severe threats to human health and thus requires effective remediation methods. In this study, Synechocystis PCC6803, a model cyanobacterium common in aquatic environments, was used to investigate the role of extracellular polymeric substances (EPS) in As toxicity, accumulation, and transformation processes. We monitored the growth of Synechocystis with As exposure, measured the zeta potential and binding sites on the cell surface, and analysed As accumulation and speciation in Synechocystis cells with and without EPS. After EPS removal, the binding sites and zeta potential of the cell surface decreased by 44.43% and 31.9%, respectively. The growth of Synechocystis decreased 49.4% and 43.7% with As⁽ᴵᴵᴵ⁾ and As⁽ⱽ⁾ exposure, and As accumulation in the cells decreased by 12.8–44.5% and 14–42.7%, respectively. As absorption was enhanced in cells with EPS removed. The oxidation of As⁽ᴵᴵᴵ⁾ and reduction of As⁽ⱽ⁾ were significantly greater in cells with intact EPS compared to those with EPS removed. Fourier transform infrared spectroscopy (FTIR) showed that functional groups of EPS and Synechocystis cells, including –NH, –OH, CO, and CC, interacted with As species. Together the results of this work demonstrate that EPS have significant impacts on cell surface properties, thereby affecting As accumulation and transformation in Synechocystis PCC6803. This work provides a basis for using EPS to remedy As pollution in aquatic environments.
Show more [+] Less [-]Pre-ozonation of surface water: An effective water treatment process to reduce the risk of infection by Giardia in drinking water
2020
Kondo Nakada, Liane Yuri | Urbano dos Santos, Luciana | Guimarães, José Roberto
Giardia is a protozoan parasite of primary concern for the drinking water industry. High contact times are required for Giardia inactivation by chlorination, while ozonation may be effective at much lower Ct products. In this study, we have assessed the occurrence of Giardia cysts in raw water, and in chlorinated or ozonated water from a drinking water treatment plant (DWTP) in Brazil, over a 16-month period. Moreover, we analyzed the effects of primary disinfection on cysts, and calculated the infection risk caused by the occurrence of Giardia cysts in raw water, chlorinated or ozonated water. Furthermore, we assessed the correlation of Giardia cysts with indicator bacteria in raw water. Data referring to concentration of Giardia cysts in raw water showed adherence to a gamma distribution at a significance level α = 0.05. The detection frequency and the mean concentration of Giardia cysts were higher in raw water (86.6%, 26 cysts∙L⁻¹), than in chlorinated (46.1%, 15.7 cysts·L⁻¹) or ozonated water (43.5%, 11.1 cysts·L⁻¹). Overall, Giardia non-viable cysts were detected more frequently in ozonated water (80%) than in chlorinated water (68.2%) or raw water (37.7%). Ozonation and chlorination resulted, respectively, in ≈27.5- and ≈13- fold reduction of Giardia infection risk, when compared to the risk calculated for raw water. Total coliform and Escherichia coli proved to be suitable surrogates to predict the occurrence of Giardia cysts in raw surface water, however, the indicator bacteria may not be suitable surrogates to predict the disinfection of Giardia cysts, as no correlation was found between indicator bacteria and Giardia cysts in treated water. To our knowledge, this is the first study reporting the efficacy of chlorine and ozone at Ct products actually applied at a full-scale drinking water treatment plant against Giardia cysts naturally occurring in the source water, i.e. real situation. Ozonation has proven more efficient than chlorination against Giardia cysts in surface water. Escherichia coli proved to be suitable surrogate to predict Giardia cysts in raw surface water.
Show more [+] Less [-]Occurrence and assessment of environmental risks of endocrine disrupting compounds in drinking, surface and wastewaters in Serbia
2020
Čelić, Mira | Škrbić, Biljana D. | Insa, Sara | Živančev, Jelena | Gros, Meritxell | Petrović, M. (Mira)
The present study is the first comprehensive monitoring of 13 selected endocrine disrupting compounds (EDCs) in untreated urban and industrial wastewater in Serbia to assess their impact on the Danube River basin and associated freshwaters used as sources for drinking water production in the area. Results showed that natural and synthetic estrogens were present in surface and wastewater at concentrations ranging from 0.1 to 64.8 ng L⁻¹. Nevertheless, they were not detected in drinking water. For alkylphenols concentrations ranged from 1.1 to 78.3 ng L⁻¹ in wastewater and from 0.1 to 37.2 ng L⁻¹ in surface water, while in drinking water concentrations varied from 0.4 to 7.9 ng L⁻¹. Bisphenol A (BPA) was the most abundant compound in all water types, with frequencies of detection ranging from 57% in drinking water, to 70% in surface and 84% in wastewater. Potential environmental risks were characterized by calculating the risk quotients (RQs) and the estrogenic activity of EDCs in waste, surface and drinking water samples, as an indicator of their potential detrimental effects. RQ values of estrone (E1) and estradiol (E2) were the highest, exceeding the threshold value of 1 in 60% of wastewater samples, while in surface water E1 displayed potential risks in only two samples. Total estrogenic activity (EEQₜ) surpassed the threshold of 1 ng E2 L⁻¹ in about 67% of wastewater samples, and in 3 surface water samples. In drinking water, EEQₜ was below 1 ng L⁻¹ in all samples.
Show more [+] Less [-]Antimony as a tracer of non-exhaust traffic emissions in air pollution in Granada (S Spain) using lichen bioindicators
2020
Parviainen, Annika | Papaslioti, Evgenia Maria | Casares Porcel, Manuel | Garrido, Carlos J.
We have studied the metal air pollution trends in a medium-sized Spanish city suffering from traffic emission using in-situ lichen Xanthoria parietina as a bioindicator. The large scale sampling included 97 samples from urban, metropolitan and remote control areas of Granada that were analyzed by Inductively Coupled Plasma-Mass Spectrometry. Enrichment factor of Sb exhibited severe anthropogenic enrichment, whereas Cu and Sb showed significantly higher median values in the urban areas with respect to metropolitan areas. Additionally, bioaccumulation ratios of V, Cr, Ni, Cu, Zn, Cd, Sb, and Pb —associated to exhaust and non-exhaust traffic emissions— enabled us to delineate hot spots of metal(loid) accumulation in the main accesses to the city, characterized by dense traffic and copious traffic jams. To distinguish non-exhaust emissions, we studied the spatial distribution of the Cu:Sb ratio —a tracer of brake wear— highlighting the surroundings of the highway and the main traffic accesses to the city likely due to sudden hard braking and acceleration during frequent traffic jams. Our study shows that the metal(loid) contents in lichens are excellent proxies for non-exhaust traffic emissions and that their contribution to the metal(loid) air pollution in Granada is more significant than previously thought.
Show more [+] Less [-]Explaining social acceptance of a municipal waste incineration plant through sociodemographic and psycho-environmental variables
2020
Subiza-Pérez, Mikel | Marina, Loreto Santa | Irizar, Amaia | Gallastegi, Mara | Anabitarte, Asier | Urbieta, Nerea | Babarro, Izaro | Molinuevo, Amaia | Vozmediano, Laura | Ibarluzea, Jesús
Municipal waste incineration plants (MWIPs) are a source of emission of diverse pollutants that have been associated with environmental and health effects, mainly in relation to premises that are old and not well equipped or maintained. As a result, the public usually holds a negative view of such plants and tends to react adversely to construction of new plants. Understanding a population’s perceptions is key to ensuring the correct development of such infrastructure and adequately managing population health concerns and behaviours. In this study, we surveyed 173 residents living close (≤ 10 km) to an MWIP being built in San Sebastian (Gipuzkoa, Spain) and 164 living further away (>10 km). The questionnaire included sociodemographic and psycho-environmental measures. Answers to the questionnaire revealed a fairly low acceptance rate and the perception of a high risk for human health and the environment (average scores of 0.57, 3.07 and 2.89 respectively in a 0 to 4 scale), with no statistically significant differences between people living nearby and further afield. A hierarchical regression model built to explore the public’s acceptance of the MWIP explained 59% of the variance. Dominance and relative weight analyses revealed that the most important predictors of acceptance were trust in the information provided by the local government and perceived risk for human health, which accounted for 33.7% and 27.4% of the variance explained by the model respectively. Preference for landfilling and MWIP acceptance in a farther location made a less relevant contribution.
Show more [+] Less [-]Biodegradation of phthalate esters by Paracoccus kondratievae BJQ0001 isolated from Jiuqu (Baijiu fermentation starter) and identification of the ester bond hydrolysis enzyme
2020
Xu, Youqiang | Minhazul, Karim A.H.M. | Wang, Xiaocheng | Liu, Xiao | Li, Xiuting | Meng, Qi | Li, Hehe | Zhang, Chengnan | Sun, Xiaotao | Sun, Baoguo
Phthalate ester (PAE) pollution is an increasing problem globally. Paracoccus kondratievae BJQ0001 was isolated from the fermentation starter of Baijiu and showed an efficient degradation capability toward PAEs. To our poor knowledge, this is the first report of a P. kondratievae strain capable of degrading PAEs. The first complete genome sequence of P. kondratievae was presented without gaps, and composed of two circular chromosomes and one plasmid. The species simultaneously degraded di-methyl phthalate (DMP), di-ethyl phthalate (DEP), di-butyl phthalate (DBP), di-isobutyl phthalate (DIBP) and di-(2-ethylhexyl) phthalate (DEHP), with DMP and DEP as the preferred substrates. The half-life (t₁/₂) of DMP was only 6.34 h with an initial concentration of 200 mg/L. Combined with gene annotation and metabolic intermediate analysis, a metabolic pathway was proposed for the species. Benzoic acid, the intermediate of anaerobic PAE metabolism, was identified in the aerobic degradation process. Two key enzymes for alkyl ester bond hydrolysis were obtained, and belonged to families IV and VI of hydrolases, respectively. These results will promote the investigation of PAE degradation by P. kondratievae, and provide useful information for improving the quality control of food and environmental PAE treatment.
Show more [+] Less [-]High-effectively degrade the di-(2-ethylhexyl) phthalate via biochemical system: Resistant bacterial flora and persulfate oxidation activated by BC@Fe3O4
2020
Xie, Yanluo | Liu, Huakang | Li, Hao | Tang, Hao | Peng, He | Xu, Heng
Di-(2-ethylhexyl) phthalate (DEHP) has been classified as a priority pollutant which increased the healthy risk to human and animals dramatically. Hence, a novel biochemical system combined by DEHP-resistant bacterial flora (B) and a green oxidant of persulfate (PS) activated by Nano-Fe₃O₄ was applied to degrade DEHP in contaminated soil. In this study, the resistant bacterial flora was screened from activated sludge and immobilized by sodium alginate (SAB). Nano-Fe₃O₄ was coated on biochar (BC@Fe₃O₄) to prevent agglomerating in soil. X-ray diffraction (XRD) and scanning electron microscope (SEM) were utilized to characterize BC@Fe₃O₄. Results demonstrated that the treatment of biochemical system (SAB + BC@Fe₃O₄ + PS) presented the maximum degradation rate about 92.56% within 24 days of incubation and improved soil microecology. The 16S rDNA sequences analysis of soil microorganisms showed a significantly different abundance and a similar diversity among different treatments. Kyoto Encyclopedia of Genes and Genomes (KEGG) functional genes difference analysis showed that some metabolic pathways, such as metabolism of cofactors and vitamins, energy metabolism, cell growth and death, replication and repair, were associated with the biodegradation of DEHP. Besides, DEHP was converted to MEHP and PA by biodegradation, while DEHP was converted to DBP and PA by persulfate and BC@Fe₃O₄, and then ultimately degraded to CO₂ and H₂O.
Show more [+] Less [-]Spatiotemporal vanadium distribution in soils with microbial community dynamics at vanadium smelting site
2020
Zhang, Han | Zhang, Baogang | Wang, Song | Chen, Junlin | Jiang, Bo | Xing, Yi
Whereas the adverse effects of vanadium released from smelting activities on soil microbial ecology have been widely recognized, little is known about spatiotemporal vanadium distribution and microbial community dynamics in typical contaminated sites. This study describes vanadium contents associated with health risk and microbial responses in both topsoil and subsoil during four consecutive seasons around an ongoing-production smelter in Panzhihua, China. Higher levels of vanadium concentration exceeding soil background value in China (82 mg/kg) were found close to the smelter. Vanadium concentrations decreased generally with the increase in distance to the smelter and depth below surface, as soil vanadium pollution is induced mainly by atmospheric deposition of vanadium bearing dust during smelting. Residual fraction was the predominated vanadium form in soils, with pronounced increase in bioavailable vanadium during rainfall period due to frequent drought-rewetting process. Topsoil close to the smelter exhibited significant contamination, inducing high probability of adverse health effects. Spatiotemporal vanadium distribution creates filtering effects on soil microorganisms, promoting metal tolerant genera in topsoil (e.g. Microvirga) and subsoil (e.g. Bacillus, Geobacter), which is the key in maintaining the community structure by promoting cooperative relation with other taxa. Our results reveal spatiotemporal vanadium distribution in soils at site scale with potential health risk and microbial responses, which is helpful in identifying severe contamination and implementing bioremediation.
Show more [+] Less [-]Iron solubility in fine particles associated with secondary acidic aerosols in east China
2020
Zhu, Yanhong | Li, Weijun | Lin, Qiuhan | Yuan, Qi | Liu, Lei | Zhang, Jian | Zhang, Yinxiao | Shao, Longyi | Niu, Hongya | Yang, Shushen | Shi, Zongbo
Soluble iron (FeS) in aerosols contributes to free oxygen radical generation with implications for human health, and potentially catalyzes sulfur dioxide oxidation. It is also an important external source of micronutrients for ocean ecosystems. However, factors controlling FeS concentration and its contribution to total iron (FeT) in aerosols remain poorly understand. Here, FeS and FeT in PM₂.₅ was studied at four urban sites in eastern China from 21 to 31 December, 2017. Average FeT (869–1490 ng m⁻³) and FeS (24–68 ng m⁻³) concentrations were higher in northern than southern China cities, but Fe solubility (%FeS, 2.7–5.0%) showed no spatial pattern. Correlation analyses suggested %FeS was strongly correlated with FeS and PM₂.₅ instead of FeT concentrations. Individual particle observations confirmed that more than 65% of nano-sized Fe-containing particles were internally mixed with sulfates and nitrates. Furthermore, there was a high correlation between sulfates or nitrates/FeT molar ratio and %FeS. We also found that the sulfates/nitrates had weaker effects on %FeS at RH < 50% than at RH > 50%, suggesting RH as indirect factor can influence %FeS in PM₂.₅. These results suggest an important role of chemical processing in enhancing %FeS in the polluted atmosphere.
Show more [+] Less [-]