Refine search
Results 1841-1850 of 1,908
Arsenic, chromium and mercury removal using mussel shell ash or a sludge/ashes waste mixture
2013
Seco-Reigosa, Natalia | Peña-Rodríguez, Susana | Nóvoa-Muñoz, Juan Carlos | Arias-Estévez, Manuel | Fernández-Sanjurjo, María J. | Álvarez-Rodríguez, Esperanza | Núñez Delgado, Avelino
Different batches of valued mussel shell and waste mussel shell ash are characterised. Shell ash has pH > 12 and high electrical conductivities (between 16.01 and 27.27 dS m⁻¹), while calcined shell shows pH values up to 10.7 and electrical conductivities between 1.19 and 3.55 dS m⁻¹. X-ray fluorescence, nitric acid digestion and water extractions show higher concentrations in shell ash for most parameters. Calcite is the dominant crystalline compound in this ash (95.6 %), followed by aragonite. Adsorption/desorption trials were performed for mussel shell ash and for a waste mixture including shell ash, sewage sludge and wood ash, showing the following percentage adsorptions: Hg(II) >94 %, As(V) >96 % and Cr(VI) between 11 and 30 % for shell ash; Hg(II) >98 %, As(V) >88 % and Cr(VI) between 30 and 88 % for the waste mixture. Hg and As desorption was <5 % for both shell ash and the waste mixture, while Cr desorption was between 92 and 45 % for shell ash, and between 19 and 0 % for the mixture. In view of that, mussel shell ash and the mixture including shell ash, sewage sludge and wood ash could be useful for Hg(II) and As(V) removal.
Show more [+] Less [-]Copper ultrastructural localization, subcellular distribution, and phytotoxicity in Hydrilla verticillata (L.f.) Royle
2013
Xu, Qinsong | Qiu, Han | Chu, Weiyue | Fu, Yongyang | Cai, Sanjuan | Min, Haili | Sha, Sha
Laboratory experiments were conducted to investigate copper (Cu) subcellular distribution and toxicity in Hydrilla verticillata. Fronds were subjected to different concentrations (15, 75, and 150 μM) of Cu for 7 days. Cu grains were found in cell walls, plasmodesmata, and within the nuclei and chloroplasts using the autometallographic technique. Subcellular fractionation of Cu-containing tissues indicated that in leaves subjected to high Cu concentrations, 59-65 % of the element was located in the cell wall fraction, followed by cell organelles (21-30 %) and the soluble fraction (10-14 %). The levels of K, P, Zn, and Mg declined under all Cu concentrations, but Ca, Mn, and Fe contents reached their peak at 15 μM Cu and decreased thereafter. F v/F m, F 0, and F m fell significantly in line with the decrease in pigment content. Cu exposure also caused significant damage to the chloroplasts, mitochondria, and nuclei, including disintegration of the chloroplasts and vacuolization of the mitochondria and nuclei, all of which suggested that Cu hastened plant senescence. The Cu maximum permissible concentration for H. verticillata was 10 μM, which was less than the existing general water quality standard. This suggested that H. verticillata could be used to assess Cu phytotoxicity.
Show more [+] Less [-]Organochlorinated pesticides, PCBs, dioxins, and PBDEs in grey mullets (Liza ramada) and allis shads (Alosa alosa) from the Vilaine estuary (France)
2013
Bocquené, Gilles | Abarnou, Alain
This study aimed to compare the contamination levels of various organohalogenated compounds in two migratory fish species in the Vilaine River in western France. Organochlorinated pesticides, polychlorinated biphenyls (PCBs), dioxins (polychlorinated dibenzo-p-dioxins/dibenzofurans (PCDDs/Fs)), and polybrominated diphenyl ethers (PBDEs) were analyzed in two diadromous species from the Vilaine estuary, the grey mullet (Liza ramada)—an amphihaline species, and the allis shad (Alosa alosa)—an anadromous species. Fish were collected in spring 2004 and spring 2005, upstream and downstream of the Arzal Dam. PCB contamination varied from 27 to 200 ng g⁻¹ dry weight (d.w.). PCDDs/Fs, expressed in toxicity equivalent quantity (TEQ) varied from 0.4 to 2.8 pg g⁻¹ d.w. Dioxins and dioxin-like PCBs expressed in total TEQ varied from 1.4 to 18.8 pg g⁻¹ d.w. PBDE47 was present at around 2–10 ng g⁻¹ d.w. and concentrations of the insecticide dichlorodiphenyltrichloroethane breakdown product p,p′-dichlorodiphenylchloroethylene varied from 1 to 14 ng g⁻¹ d.w. For both species, specimens collected upstream were more contaminated. The grey mullet specimens were less contaminated than the allis shad when taken downstream of the dam but were more contaminated upstream. The allis shads presented intermediate contaminant concentrations with a less pronounced difference between upstream and downstream specimens. However, it is thought that shads do not feed when they spawn in the upstream parts of rivers, which should modify the contaminant concentrations. However, measurements in upstream shad samples show an unexpected increase of the contamination, which remains unexplained.
Show more [+] Less [-]Optimization for municipal solid waste treatment based on energy consumption and contaminant emission
2013
Jiao, An-ying | Li, Zhen-shan | Wang, Lei | Xia, Meng-jing
This paper analyzes the characterization of energy consumption and contaminant emissions from a municipal solid waste (MSW) treatment system that comprises transfer station, landfill site, combustion plant, composting plant, dejecta treatment station, and an integrated MSW treatment plant. The consumed energy and energy medium materials were integrated under comprehensive energy consumption (CEC) for comparison. Among typical MSW disposal methods such as combustion, composting, and landfilling, landfilling has the minimum CEC value. Installing an integrated treatment plant is the recommended MSW management method because of its lower CEC. Furthermore, this method is used to ensure process centralization. In landfill sites, a positive linear correlation was observed between the CEC and contaminant removal ratios when emitted pollutants have a certain weight coefficient. The process should utilize the minimum CEC value of 5.3702 kgce/t MSW and consider energy consumption, energy recovery, MSW components, and the equivalent of carbon dioxide emissions.
Show more [+] Less [-]Effects of perchlorate on growth of four wetland plants and its accumulation in plant tissues
2013
He, Hongzhi | Gao, Haishuo | Chen, Guikui | Li, Huashou | Lin, Hai | Shu, Zhenzhen
Perchlorate contamination in water is of concern because of uncertainties about toxicity and health effects, impact on ecosystems, and possible indirect exposure pathways to humans. Therefore, it is very important to investigate the ecotoxicology of perchlorate and to screen plant species for phytoremediation. Effects of perchlorate (20, 200, and 500 mg/L) on the growth of four wetland plants (Eichhornia crassipes, Acorus calamus L., Thalia dealbata, and Canna indica) as well as its accumulation in different plant tissues were investigated through water culture experiments. Twenty milligrams per liter of perchlorate had no significant effects on height, root length, aboveground part weight, root weight, and oxidizing power of roots of four plants, except A. calamus, and increasing concentrations of perchlorate showed that out of the four wetland plants, only A. calamus had a significant (p < 0.05) dose-dependent decrease in these parameters. When treated with 500 mg/L perchlorate, these parameters and chlorophyll content in the leaf of plants showed significant decline contrasted to control groups, except the root length of E. crassipes and C. indica. The order of inhibition rates of perchlorate on root length, aboveground part weight and root weight, and oxidizing power of roots was: A. calamus > C. indica > T. dealbata > E. crassipes and on chlorophyll content in the leaf it was: A. calamus > T. dealbata > C. indica > E. crassipes. The higher the concentration of perchlorate used, the higher the amount of perchlorate accumulation in plants. Perchlorate accumulation in aboveground tissues was much higher than that in underground tissues and leaf was the main tissue for perchlorate accumulation. The order of perchlorate accumulation content and the bioconcentration factor in leaf of four plants was: E. crassipes > C. indica > T. dealbata > A. calamus. Therefore, E. crassipes might be an ideal plant with high tolerance ability and accumulation ability for constructing wetland to remediate high levels of perchlorate polluted water.
Show more [+] Less [-]Biosolid-borne tetracyclines and sulfonamides in plants
2013
Mathews, Shiny | Reinhold, Dawn
Tetracyclines and sulfonamides used in human and animal medicine are released to terrestrial ecosystems from wastewater treatment plants or by direct manure application. The interactions between plants and these antibiotics are numerous and complex, including uptake and accumulation, phytometabolism, toxicity responses, and degradation in the rhizosphere. Uptake and accumulation of antibiotics have been studied in plants such as wheat, maize, potato, vegetables, and ornamentals. Once accumulated in plant tissue, organic contaminants can be metabolized through a sequential process of transformation, conjugation through glycosylation and glutathione pathways, and ultimately sequestration into plant tissue. While studies have yet to fully elucidate the phytometabolism of tetracyclines and sulfonamides, an in-depth review of plant and mammalian studies suggest multiple potential transformation and conjugation pathways for tetracyclines and sulfonamides. The presence of contaminants in the vicinity or within the plants can elicit stress responses and defense mechanisms that can help tolerate the negative effects of contaminants. Antibiotics can change microbial communities and enzyme activity in the rhizosphere, potentially inducing microbial antibiotic resistance. On the other hand, the interaction of microbes and root exudates on pharmaceuticals in the rhizosphere can result in degradation of the parent molecule to less toxic compounds. To fully characterize the environmental impacts of increased antibiotic use in human medicine and animal production, further research is essential to understand the effects of different antibiotics on plant physiology and productivity, uptake, translocation, and phytometabolism of antibiotics, and the role of antibiotics in the rhizosphere.
Show more [+] Less [-]Applying physicochemical approaches to control phosphogypsum heavy metal releases in aquatic environment
2013
Ammar, Rawaa | El Samrani, Antoine G. | Kazpard, Véronique | Bassil, Joseph | Lartiges, Bruno | Saad, Zeinab | Chou, Lei
One of the most important sources of solid waste in the Mediterranean Basin ecosystem originated from the phosphate fertilizer industries, which discharge phosphogypsum (PG) directly into aquatic environments or are stacked on stockpiles. The present study investigates metal release from PG under the influence of variable pH, increasing PG mass content, and complexing organic matter ligands. Major ions from PG leachates, grain size and charge, main functional groups along with metal leachability (Pb, Cd, Cr, Cu, and Zn) were determined using ion chromatography, laser diffraction, zetameter, Fourier transform infrared spectroscopy, and atomic absorption spectroscopy, respectively. The complete dissolution of PG recorded is at 2 g/L. Saturation and supersaturation with respect to PG may occur at concentrations of 3 and 4 g/L, respectively, revealing a clustering phenomenon leading to heavy metal encapsulation within the aggregates. Organic ligands such as citrate may trigger the cationic exchange within the PG suspension leading to ion release. As these factors are considered as specific process involving the release of contaminants from PG during storage under natural conditions, this study could set the foundations for PG remediation in aquatic environment. Organic ligands under controlled pH conditions could be utilized in treating fertilizer industrial wastes by taking into consideration the particularity of the receiving area, thus decreasing metal hazardous impact on natural media.
Show more [+] Less [-]Treatment of textile dyeing wastewater by biomass of Lactobacillus: Lactobacillus 12 and Lactobacillus rhamnosus
2013
Sayilgan, Emine | Cakmakci, Ozgur
The main purpose of this study was to investigate the effectiveness of Lactobacillus 12 and Lactobacillus rhamnosus as both cells and biomasses for the removal of dye from real textile dyeing wastewater. The removal experiments were conducted according to the Box–Behnken experimental design, and the regression equations for the removal of dye were determined by the Minitab 14 program. The optimum variables were found to be 10 g/ L biomass concentration for biomasses, 3 for initial pH of the solution, and 20 °C for temperature with an observed dye removal efficiency of about 60 and 80 % with L. 12 and L. rhamnosus biomasses, respectively. Scanning electron microscopy and Fourier transform infrared spectroscopy images also showed that the biomass characteristics studied were favored by the sorption of the dye from the textile industry wastewater. Consequently, these biomasses may be considered as good biosorbents due to their effective yields and the lower cost of the removal of dyes from the effluents of the textile dyeing house.
Show more [+] Less [-]Mechanisms of toxicity of triphenyltin chloride (TPTC) determined by a live cell reporter array
2013
Su, Guanyong | Zhang, Xiaowei | Raine, Jason C. | Xing, Liqun | Higley, Eric | Hecker, Markus | Giesy, John P. | Yu, Hongxia
Triphenyltin chloride (TPTC), which has been extensively used in industry and agriculture, can occur at concentrations in the environment sufficient to be toxic. Here, potency of TPTC to modulate genes in a library containing 1,820 modified green fluorescent protein (GFP)-expressing promoter reporter vectors constructed from Escherichia coli K12 strains was determined. Exposure to TPTC resulted in 22 (fold change > 2) or 71 (fold change > 1.5) differentially expressed genes. The no observed transcriptional effect (NOTEC) and median transcriptional effect concentrations (TEC50) were determined to be 0.036 and 0.45 mg/L in E. coli. These responses were 1,230 and 97 times more sensitive than the acute median effect concentration (EC50) required to inhibit growth of cells, which demonstrated that this live cell array represents a sensitive method to assess toxic potency of chemicals. The 71 differentially expressed genes could be classified into seven functional groups. Of all the altered genes, three groups which encoded for catalytic enzymes, regulatory proteins, and structural proteins accounted for 28 %, 18 %, and 14 % of all altered genes, respectively. The pattern of differential expression observed during this study was used to elucidate the mechanism of toxicity of TPTC. To determine potential relationships among genes that were changed greater than 2.0-fold by exposure to TPTC, a correlation network analysis was constructed, and four genes were related to aroH, which is the primary target for metabolic regulation of aromatic biosynthesis by feedback inhibition in bacteria. The genes rnC, cld, and glgS were selected as potential biomarkers for TPTC, since their expression was more than 2.0-fold greater after exposure to TPTC.
Show more [+] Less [-]Environmental–sanitary risk analysis procedure applied to artificial turf sports fields
2013
Ruffino, Barbara | Fiore, Silvia | Zanetti, Maria Chiara
Owing to the extensive use of artificial turfs worldwide, over the past 10 years there has been much discussion about the possible health and environmental problems originating from styrene-butadiene recycled rubber. In this paper, the authors performed a Tier 2 environmental-sanitary risk analysis on five artificial turf sports fields located in the city of Turin (Italy) with the aid of RISC4 software. Two receptors (adult player and child player) and three routes of exposure (direct contact with crumb rubber, contact with rainwater soaking the rubber mat, inhalation of dusts and gases from the artificial turf fields) were considered in the conceptual model. For all the fields and for all the routes, the cumulative carcinogenic risk proved to be lower than 10(-6) and the cumulative non-carcinogenic risk lower than 1. The outdoor inhalation of dusts and gases was the main route of exposure for both carcinogenic and non-carcinogenic substances. The results given by the inhalation pathway were compared with those of a risk assessment carried out on citizens breathing gases and dusts from traffic emissions every day in Turin. For both classes of substances and for both receptors, the inhalation of atmospheric dusts and gases from vehicular traffic gave risk values of one order of magnitude higher than those due to playing soccer on an artificial field.
Show more [+] Less [-]