Refine search
Results 1861-1870 of 3,207
Enhanced soil washing process for the remediation of PBDEs/Pb/Cd-contaminated electronic waste site with carboxymethyl chitosan in a sunflower oil–water solvent system and microbial augmentation Full text
2015
Ye, Mao | Sun, Mingming | Wan, Jinzhong | Fang, Guodong | Li, Huixin | Hu, Feng | Jiang, Xin | Kengara, Fredrick Orori
An innovative ex situ soil washing technology was developed to remediate polybrominated diphenyl ethers (PBDEs) and heavy metals in an electronic waste site. Elevated temperature (50 °C) in combination with ultrasonication (40 kHz, 20 min) at 5.0 mL L⁻¹sunflower oil and 2.5 g L⁻¹carboxymethyl chitosan were found to be effective in extracting mixed pollutants from soil. After two successive washing cycles, the removal efficiency rates for total PBDEs, BDE28, BDE47, BDE209, Pb, and Cd were approximately 94.1, 93.4, 94.3, 99.1, 89.3, and 92.7 %, respectively. Treating the second washed soil with PBDE-degrading bacteria (Rhodococcus sp. strain RHA1) inoculation and nutrient addition for 3 months led to maximum biodegradation rates of 37.3, 52.6, 23.9, and 1.3 % of the remaining total PBDEs, BDE28, BDE47, BDE209, respectively. After the combined treatment, the microbiological functions of washed soil was partially restored, as indicated by a significant increase in the counts, biomass C, N, and functioning diversity of soil microorganisms (p < 0.05), and the residual PBDEs and heavy metals mainly existed as very slow desorbing fractions and residual fractions, as evaluated by Tenax extraction combined with a first-three-compartment model and sequential extraction with metal stability indices (IRand Uₜₛ). Additionally, the secondary environmental risk of mixed contaminants in the remediated soil was limited. Therefore, the proposed combined cleanup strategy is an environment-friendly technology that is important for risk assessment and management in mixed-contaminated sites.
Show more [+] Less [-]Determination of wood burning and fossil fuel contribution of black carbon at Delhi, India using aerosol light absorption technique Full text
2015
Tiwari, S. | Pipal, A. S. | Srivastava, A. K. | Bisht, D.S. | Pandithurai, G.
A comprehensive measurement program of effective black carbon (eBC), fine particle (PM₂.₅), and carbon monoxide (CO) was undertaken during 1 December 2011 to 31 March 2012 (winter period) in Delhi, India. The mean mass concentrations of eBC, PM₂.₅, and CO were recorded as 12.1 ± 8.7 μg/m³, 182.75 ± 114.5 μg/m³, and 3.41 ± 1.6 ppm, respectively, during the study period. Also, the absorption Angstrom exponent (AAE) was estimated from eBC and varied from 0.38 to 1.29 with a mean value of 1.09 ± 0.11. The frequency of occurrence of AAE was ~17 % less than unity whereas ~83 % greater than unity was observed during the winter period in Delhi. The mass concentrations of eBC were found to be higher by ~34 % of the average value of eBC (12.1 μg/m³) during the study period. Sources of eBC were estimated, and they were ~94 % from fossil fuel (eBCff) combustion whereas only 6 % was from wood burning (eBCwb). The ratio between eBCff and eBCwb was 15, which indicates a higher impact from fossil fuels compared to biomass burning. When comparing eBCff during day and night, a factor of three higher concentrations was observed in nighttime than daytime, and it is due to combustion of fossil fuel (diesel vehicle emission) and shallow boundary layer conditions. The contribution of eBCwb in eBC was higher between 1800 and 2100 hours due to burning of wood/biomass. A significant correlation between eBC and PM₂.₅(r = 0.78) and eBC and CO (r = 0.46) indicates the similarity in location sources. The mass concentration of eBC was highest (23.4 μg/m³) during the month of December when the mean visibility (VIS) was lowest (1.31 km). Regression analysis among wind speed (WS), VIS, soot particles, and CO was studied, and significant negative relationships were seen between VIS and eBC (−0.65), eBCff (−0.66), eBCwb (−0.34), and CO (−0.65); however, between WS and eBC (−0.68), eBCff (−0.67), eBCwb (−0.28), and CO (−0.53). The regression analysis indicated that emission of soot particles may be localized to fossil fuel combustion, whereas wood/biomass burning emission of black carbon is due to transportation from farther distances. Regression analysis between eBCff and CO (r = 0.44) indicated a similar source as vehicular emissions. The very high loading of PM₂.₅along with eBC over Delhi suggests that urgent action is needed to mitigate the emissions of carbonaceous aerosol in the northern part of India.
Show more [+] Less [-]Modeling of trihalomethanes (THMs) in drinking water supplies: a case study of eastern part of India Full text
2015
Kumari, Minashree | Gupta, S. K.
This study aimed at developing a model for predicting the formation of trihalomethanes (THMs) in drinking water supplies. Monitoring of THMs in five major water treatment plants situated in the Eastern part of India revealed high concentration of THMs (231–484 μg l⁻¹). Chloroform was predominant, contributing 87–98.9 % to total THMs. Seasonal variation in THMs levels dictated that the concentration were higher in autumn than other seasons. Linear regression analysis of data indicated that TOC is the major organic precursors for THMs formation followed by DOC and UV₂₅₄. Linear and non-linear predictive models were developed using SPSS software version 16.0. Validation results indicated that there is no significant difference in the predictive and observed values of THMs. Linear model performed better than non-linear one in terms of percentage prediction errors. The model developed were site specific and the predictive capabilities in the distribution systems vary with different environmental conditions.
Show more [+] Less [-]Zebrafish as a model to study the role of DNA methylation in environmental toxicology Full text
2015
Kamstra, Jorke H. | Aleström, Peter | Kooter, Jan M. | Legler, Juliette
Environmental epigenetics is a rapidly growing field which studies the effects of environmental factors such as nutrition, stress, and exposure to compounds on epigenetic gene regulation. Recent studies have shown that exposure to toxicants in vertebrates is associated with changes in DNA methylation, a major epigenetic mechanism affecting gene transcription. Zebra fish, a well-known model in toxicology and developmental biology, are emerging as a model species in environmental epigenetics despite their evolutionary distance to rodents and humans. In this review, recent insights in DNA methylation during zebra fish development are discussed and compared to mammalian models in order to evaluate zebra fish as a model to study the role of DNA methylation in environmental toxicology. Differences exist in DNA methylation reprogramming during early development, whereas in later developmental stages, tissue distribution of both 5-methylcytosine and 5-hydroxymethylcytosine seems more conserved between species, as well as basic DNA (de)methylation mechanisms. All DNA methyl transferases identified so far in mammals are present in zebra fish, as well as a number of major demethylation pathways. However, zebra fish appear to lack some methylation pathways present in mammals, such as parental imprinting. Several studies report effects on DNA methylation in zebra fish following exposure to environmental contaminants, such as arsenic, benzo[a]pyrene, and tris(1,3-dichloro-2-propyl)phosphate. Though more research is needed to examine heritable effects of contaminant exposure on DNA methylation, recent data suggests the usefulness of the zebra fish as a model in environmental epigenetics.
Show more [+] Less [-]The stabilization of tannery sludge and the character of humic acid-like during low temperature pyrolysis Full text
2015
Ma, Hongrui | Gao, Mao | Hua, Li | Chao, Hao | Xu, Jing
Tannery sludge contained plenty of organic matter, and the organic substance stability had direct impact on its derived chars’ utilization. In this paper, the stabilization of tannery sludge and the variation of humic acid-like (HAL) extracted by different methods were investigated in a magnetic stirring reactor under low temperature pyrolysis of 100–400 °C. Results showed that the aromatic structure of pyrolysis chars increased with the increase of temperature and time. The char contained highly aromatic structure and relatively small dissolved organic matters (DOM) at 300 °C. The similar behaviors appeared in two HAL series by different extraction methods. The N content, H/C value, and aliphatic structures of HAL decreased with the increase of pyrolysis temperature, while the C/N value and aromatic structures increased with the rise of pyrolysis temperature. The composition and functional groups of HAL were similar with the purchased humic acid (HA). The fluorescence spectra revealed that two main peaks were found at Ex/Em = 239/363–368 nm and 283/359–368 nm in each HAL series from raw and 100 °C pyrolysis tannery sludge, representing a protein-like matter. The new peak appeared at Ex/Em = 263–283/388 nm in each HAL series from 200 °C pyrolysis tannery sludge-represented humic acid-like matter. The fluorescence intensity increased strongly compared to the other two peak intensity. Therefore, the humification of organic matter was increased by pyrolyzing. Notably, the HAL from 200 °C pyrolysis tannery sludge contained simple molecular structure, and the polycondensation increased but with a relative lower humification degree compared to soil HAL and purchased HA. Therefore, the sludge needs further oxidation. The humic substance was negligible by direct extraction when the temperature was 300 and 400 °C.
Show more [+] Less [-]Performance of a wall cascade constructed wetland treating surfactant-polluted water Full text
2015
Tamiazzo, Jessica | Breschigliaro, Simone | Salvato, Michela | Borin, Maurizio
Carwashes are highly water-consuming processes that require wastewater treatment before discharge into a sewer system due to the complex composition of leachate. Anionic surfactants (AS) are the main constituents of this wastewater because of their cleaning and solubilization properties; they can be potentially dangerous for the environment if not adequately treated. Constructed wetlands (CWs) are low-cost systems increasingly used to treat different types of wastewater; however, there are few studies on their use for the treatment of carwash wastewater. In this study, an innovative constructed wetland arranged in a “cascade” to simulate a wall system (WCCW) was experimented in 2010 and 2011 to treat AS. Three plant species were tested at different AS inlet concentrations (10, 50, and 100 mg L⁻¹) with two hydraulic retention times (HRTs; 3 and 6 days): ribbon grass (Typhoides arundinacea (L.) Moench (syn. Phalaris arundinacea L.) var. picta; Ta), water mint (Mentha aquatica L.; Ma), and divided sedge (Carex divisa Hudson; Cd). All plant species grew constantly over the experimental period, showing a capacity to tolerate even the highest AS concentration. Using the HRT of 6 days, raising the inlet concentration increased the AS outlet concentration, with similar values for the treatments (median values of 0.13–0.15, 0.47–0.78, and 1.19–1.46 mg L⁻¹ at inlet concentrations in the order 10, 50, and 100 mg L⁻¹). The shorter HRT led to significant differences among treatments in the reduction of outlet concentration, the best result being given by the tanks vegetated with Ma (A = 97.7 % with outlet concentration 0.35 mg L⁻¹). After treatments of the WCCW, the AS content was reduced almost completely, with removal in the ranges 0.07–10.2 g m⁻² day⁻¹ for tanks planted with Ta, 0.10–9.1 g m⁻² day⁻¹ for Ma tanks, and 0.11–9.5 g m⁻² day⁻¹ for Cd tanks depending on the inlet concentration.
Show more [+] Less [-]Cr(VI) and COD removal from landfill leachate by polyculture constructed wetland at a pilot scale Full text
2015
Madera-Parra, C. A. | Peña, M. R. | Peña, E. J. | Lens, P. N. L.
Four subsurface horizontal-flow constructed wetlands (CWs) at a pilot scale planted with a polyculture of the tropical plants Gynerium sagittatum (Gs), Colocasia esculenta (Ce) and Heliconia psittacorum (He) were evaluated for 7 months. The CW cells with an area of 17.94 m² and 0.60 m (h) each and 0.5 m of gravel were operated at continuous gravity flow (Q = 0.5 m³ day⁻¹) and a theoretical HRT of 7 days each and treating landfill leachate for the removal of filtered chemical oxygen demand (CODf), BOD₅, TKN, NH₄ ⁺, NO₃ ⁻, PO₄ ³⁻–P and Cr(VI). Three CWs were divided into three sections, and each section (5.98 m²) was seeded with 36 cuttings of each species (plant density of six cuttings per square metre). The other unit was planted randomly. The final distributions of plants in the bioreactors were as follows: CW I (He-Ce-Gs), CW II (randomly), CW III (Ce-Gs-He) and CW IV (Gs-He-Ce). The units received effluent from a high-rate anaerobic pond (BLAAT®). The results show a slightly alkaline and anoxic environment in the solid-liquid matrix (pH = 8.0; 0.5–2 mg L⁻¹ dissolved oxygen (DO)). CODf removal was 67 %, BOD₅ 80 %, and TKN and NH₄ ⁺ 50–57 %; NO₃ ⁻ effluents were slightly higher than the influent, PO₄ ³⁻–P (38 %) and Cr(VI) between 50 and 58 %. CW IV gave the best performance, indicating that plant distribution may affect the removal capacity of the bioreactors. He and Gs were the plants exhibiting a translocation factor (TF) of Cr(VI) >1. The evaluated plants demonstrated their suitability for phytoremediation of landfill leachate, and all of them can be categorized as Cr(VI) accumulators. The CWs also showed that they could be a low-cost operation as a secondary system for treatment of intermediated landfill leachate (LL).
Show more [+] Less [-]The dynamic interaction between combustible renewables and waste consumption and international tourism: the case of Tunisia Full text
2015
Ben Jebli, Mehdi | Ben Youssef, Slim | Apergis, Nicholas
This paper employs the autoregressive distributed lag (ARDL) bounds methodological approach to investigate the relationship between economic growth, combustible renewables and waste consumption, carbon dioxide (CO₂) emissions, and international tourism for the case of Tunisia spanning the period 1990–2010. The results from the Fisher statistic of both the Wald test and the Johansen test confirm the presence of a long-run relationship among the variables under investigation. The stability of estimated parameters has been tested, while Granger causality tests recommend a short-run unidirectional causality running from economic growth and combustible renewables and waste consumption to CO₂ emissions, a bidirectional causality between economic growth and combustible renewables and waste consumption and unidirectional causality running from economic growth and combustible renewables and waste consumption to international tourism. In the long-run, the error correction terms confirm the presence of bidirectional causality relationships between economic growth, CO₂ emissions, combustible renewables and waste consumption, and international tourism. Our long-run estimates show that combustible renewables and waste consumption increases international tourism, and both renewables and waste consumption and international tourism increase CO₂ emissions and output. We recommend that (i) Tunisia should use more combustible renewables and waste energy as this eliminates wastes from touristic zones and increases the number of tourist arrivals, leading to economic growth, and (ii) a fraction of this economic growth generated by the increase in combustible renewables and waste consumption should be invested in clean renewable energy production (i.e., solar, wind, geothermal) and energy efficiency projects.
Show more [+] Less [-]Characterization and risk assessment of polychlorinated biphenyls in soils and rice tissues in a suburban paddy field of the Pearl River Delta, South China Full text
2015
Li, Qilu | Wang, Yan | Luo, Chunling | Li, Jun | Zhang, Gan
We investigated the concentration and composition of polychlorinated biphenyls (PCBs) in paddy soils and rice tissues and the associated potential health risks in the urban agricultural areas of the Pearl River Delta (PRD), South China. The results indicated that highly chlorinated PCBs were more prominent in soil when the concentrations of low-molecular-weight PCBs were relatively high in rice plants. There was a trend of decreasing PCB concentrations with soil depth and a significant correlation between PCBs and the total organic carbon or total nitrogen concentration in section soils. The PCB concentrations followed the order of root > leaf > stem > grain. Although the dioxin toxicity equivalency values and estimated daily intake levels (based direct and indirect consumption) were lower than in other seriously contaminated regions, there is still a need to monitor PCB pollution in urban agriculture because of the PCB emissions from capacitor storage following the rapid urbanization experienced in the PRD.
Show more [+] Less [-]Citric acid enhances the phytoextraction of chromium, plant growth, and photosynthesis by alleviating the oxidative damages in Brassica napus L Full text
2015
Afshan, Sehar | Ali, Shafaqat | Bharwana, Saima Aslam | Rizwan, Muhammad | Farid, Mujahid | Abbas, Farhat | Ibrahim, Muhammad | Mehmood, Muhammad Aamer | Abbasi, Ghulam Hasan
Chromium (Cr) toxicity is widespread in crops grown on Cr-contaminated soils and has become a serious environmental issue which requires affordable strategies for the remediation of such soils. This study was performed to assess the performance of citric acid (CA) through growing Brassica napus in the phytoextraction of Cr from contaminated soil. Different Cr (0, 100, and 500 μM) and citric acid (0, 2.5, and 5.0 mM) treatments were applied alone and in combinations to 4-week-old seedlings of B. napus plants in soil under wire house condition. Plants were harvested after 12 weeks of sowing, and the data was recorded regarding growth characteristics, biomass, photosynthetic pigments, malondialdehyde (MDA), electrolytic leakage (EL), antioxidant enzymes, and Cr uptake and accumulation. The results showed that the plant growth, biomass, chlorophyll contents, and carotenoid as well as soluble protein concentrations significantly decreased under Cr stress alone while these adverse effects were alleviated by application of CA. Cr concentration in roots, stem, and leaves of CA-supplied plant was significantly reduced while total uptake of Cr increased in all plant parts with CA application. Furthermore, in comparison with Cr treatments alone, CA supply reduced the MDA and EL values in both shoots and roots. Moreover, the activity of superoxide dismutase (SOD), guaiacol peroxidase (POD), catalase (CAT), and ascorbate peroxidase (APX) in shoots and roots markedly increased by 100 μM Cr exposure, while decreased at 500 μM Cr stress. CA application enhanced the activities of antioxidant enzymes compared to the same Cr treatment alone. Thus, the data indicate that exogenous CA application can increase Cr uptake and can minimize Cr stress in plants and may be beneficial in accelerating the phytoextraction of Cr through hyper-accumulating plants such as B. napus.
Show more [+] Less [-]