Refine search
Results 1861-1870 of 7,995
Distinguishing multiple Zn sources in oysters in a complex estuarine system using Zn isotope ratio signatures Full text
2021
Ma, Lan | Wang, Wen-Xiong | Evans, R Douglas
The Pearl River Estuary (PRE), the largest estuary in Southern China, historically has suffered from metal contamination as a result of inputs from different riverine discharges. Determining the sources of metals accumulation in local aquatic flora and fauna remains a great challenge for this estuarine system with complex water circulation. In this study, Zn isotope ratios were measured in local oysters (Crassostrea hongkongensis) collected at 8 locations in the estuary on four occasions from 2014 to 2018, to better understand and assess the contamination sources. The results showed no significant differences (p < 0.05) in δ⁶⁶Zn values in oysters among the four sampling dates within individual sites. However, approximately a 0.67‰ (range from -0.66‰ to 0.01‰) difference in average δ⁶⁶Zn values was consistently found in oysters collected from the east side of the estuary compared to the west side, despite their comparable Zn concentrations. A mixing model was subsequently used to estimate the relative contributions from various sources to the δ⁶⁶Zn values in these oysters. The mixing model predicts that zinc derived from the dissolved fraction (approximately 80 %) was the dominant uptake pathway for oysters collected at the east shore whereas approximately 50 % of the Zn in oysters collected at the west shore was derived from the particulate fraction. The mixing model also was used to estimate the relative impacts of fresh versus saline water on the measured δ⁶⁶Zn values. Contributions from these two sources also varied between the east and west shores. This study presents the first data for Zn isotope ratios in oysters from the PRE, providing new insight for using Zn isotope ratios in oysters as a powerful tracer of sources in a complex estuarine system.
Show more [+] Less [-]Impact of manure compost amendments on NH3 volatilization in rice paddy ecosystems during cultivation Full text
2021
Lee, Juhee | Choi, Seongwoo | Lee, Yeomyeong | Kim, Sang Yoon
Livestock manure has been widely used in agriculture to improve soil productivity and quality. However, intensive application can significantly enhance soil nitrogen (N) availability and facilitate ammonia (NH₃) volatilization during rice cultivation. The effects of different rates of manure application on the NH₃ volatilization rate, its mechanism, and their relationships have not been comprehensively investigated. In this study, field trials were conducted to investigate NH₃ volatilization in rice paddy soils amended with different livestock manure, cattle manure (CM), and swine manure (SM), at a rate of 0 (NPK), 10, 20, and 40 Mg ha⁻¹ during cultivation. Moreover, the soil physicochemical and biological properties and rice N uptake were investigated. Ultra-fine particulate matter (PM₂.₅) was measured quantitatively and qualitatively. Manure application significantly increased NH₃ emissions compared to the control. Much higher volatilization rates were observed in the SM soils than in the CM soils, even when the same amount of N was applied. This is mainly related to the higher labile NH₄⁺ concentration and urease activity in SM soils. With increasing application levels, NH₃ emission rates proportionally increased in the SM, but there was no significant difference in the CM. Livestock manure application significantly increased NH₃ volatilization, particularly during the initial manure application and additional fertilization stages during rice cultivation. The results showed that the application of livestock manure significantly increased NH₃ volatilization. Moreover, the biochemical properties of manure composts, including labile N and urease activity, mainly affected NH₃ dynamics in rice paddies during cultivation rather than their type. Irrespective of manure application, PM₂.₅, did not show a significant difference at the initial stage of cultivation. NH₃ volatilization was not significantly correlated with the formation of PM₂.₅. It is necessary to develop effective strategies for mitigating NH₃ volatilization and maintaining soil quality without decreasing rice productivity in paddy ecosystems.
Show more [+] Less [-]Application of laccase immobilized rice straw biochar for anthracene degradation Full text
2021
Imam, Arfin | Suman, Sunil Kumar | Singh, Raghuvir | Vempatapu, Bhanu Prasad | Ray, Anjan | Kanaujia, Pankaj K.
The present study explores the immobilization of ligninolytic enzyme-laccase on the surface of rice straw biochar and evaluates its application for anthracene biodegradation. The rice straw biochar was acid-treated to generate carboxyl functionality on its surface, followed by detailed morphological and chemical characterization. The surface area of functionalized biochar displayed a two-fold increase compared to the untreated biochar. Laccase was immobilized on functionalized biochar, and an immobilization yield of 66% was obtained. The immobilized enzyme demonstrated operational stability up to six cycles while retaining 40% of the initial activity. Laccase immobilization was further investigated by performing adsorption and kinetic studies, which revealed the highest immobilization concentration of 500 U g⁻¹ at 25 °C. The adsorption followed the Langmuir isotherm model at equilibrium, and the kinetic study confirmed pseudo-second-order kinetics. The equilibrium rate constant (K₂) at 25 °C and 4 °C were 3.6 × 10⁻³ g U⁻¹ min⁻¹ and 4 × 10⁻³ g U⁻¹ min⁻¹ respectively for 100 U g⁻¹ of enzyme loading. This immobilized system was applied for anthracene degradation in the aqueous batch mode, which resulted in complete degradation of 50 mg L⁻¹ anthracene within 24 h of interaction exposure.
Show more [+] Less [-]Influence of sulfur amendments on heavy metals phytoextraction from agricultural contaminated soils: A meta-analysis Full text
2021
Zakari, Sissou | Jiang, Xiaojin | Zhu, Xiai | Liu, Wenjie | Allakonon, M. Gloriose B. | Singh, Ashutosh Kumar | Chen, Chunfeng | Zou, Xin | Akponikpè, P.B Irénikatché | Dossa, Gbadamassi G.O. | Yang, Bin
Heavy metal pollution is becoming recurrent and threatens biota biosafety in many agricultural fields. Diverse solutions explore the application of amendments to enable remediation. Sulfur represents a nonmetallic chemical element that actively affects heavy metals phytoextraction, and promotes and alternatively mitigates soil functions. In this study, we conduct a meta-analysis to synthesize the current knowledge on the influence of sulfur amendments on plants heavy metals uptake from contaminated soil media. Random-effects model was used to summarize effect sizes from 524 data points extracted from 30 peer reviewed studies. The phytoextraction of cadmium, chromium and nickel were 1.6-, 3.3-, and 12.6-fold, respectively, higher when sulfur amendment was applied; while copper uptake was 0.3-fold lower. Irrespective of the sulfur type, heavy metal extraction increased with the raising sulfur stress. Individual organs showed significant differences of heavy metal uptake between sulfur applied and non-sulfur treatments, and combined organs did not. The heavy metals uptake in leaves and roots were higher in sulfur applied than non-sulfur applied treatments, while those in grain, husk, and stalks were lower. The heavy metals phytoextraction (response ratio) followed the order roots > leaves > stalk > grain > husk. Moreover, heavy metals uptake was 2-fold higher in the sulfur applied than the non-sulfur treatments under ideal (5.5–8) and alkaline conditions (8–14), and 0.2-fold lower under acidic pH (1–5.5). Cadmium, manganese and nickel, and chromium were the most extracted under sulfur application by Vicia sp., Sorghum sp. and Brassica sp., respectively; while chromium, manganese, and iron were the most uptake without sulfur amendments by Oryza sp., Zea sp. and Sorghum sp., respectively. Our study highlights that the influence of sulfur on heavy metal phytoextraction depends on the single or combined effects of sulfur stress intensity, sulfur compounds, plant organ, plant type, and soil pH condition.
Show more [+] Less [-]Size effects of polystyrene microplastics on the accumulation and toxicity of (semi-)metals in earthworms Full text
2021
Xu, Guanghui | Yang, Yang | Yu, Yong
Microplastics (MPs) are plastic fragments less than 5 mm, which may have adverse impacts on organisms. In this study, we investigated the impacts and mechanisms of polystyrene MPs (10 μm and 100 μm) and nanoplastics (NPs, 100 nm) with different concentrations (10 mg/kg and 100 mg/kg) in soil on the uptake of metal Cd and semi-metal As in earthworms, Eisenia fetida. MPs facilitated the accumulation of (semi-)metals via damaging the integrity of earthworm intestine, and earthworms accumulated more (semi-)metals in MP treatment groups than NP treatment groups, especially in group of 100 mg/kg of 10 μm MP with concentrations of 1.13 mg/kg and 32.7 mg/kg of Cd and As, respectively. Higher genotoxicity to earthworms was observed for MPs than NPs. Antioxidant enzymes activity and their mRNA gene relative expression levels indicated that MPs with high concentration induced severer damage to earthworms, thus resulting in the increased accumulation of (semi-)metals by earthworms. In addition, proteomic and metabolomic analysis revealed that MPs (100 ppm of 10 μm) disturbed the earthworm immune and metabolic systems, resulting in the highest accumulation of (semi-)metals in earthworms. This study clarifies the influence mechanisms of MPs with different sizes and levels on the accumulation of (semi-)metals by terrestrial invertebrates.
Show more [+] Less [-]Method development and mechanistic study on direct pulsed laser irradiation process for highly effective dechlorination of persistent organic pollutants Full text
2021
Yu, Yiseul | Min, Ahreum | Jung, Hyeon Jin | Theerthagiri, Jayaraman | Lee, Seung Jun | Kwon, Ki-Young | Choi, Myong Yong
Chlorine-based compounds are typical persistent organic pollutants (POPs) that are widely generated in industrial production. This paper reports an effective and rapid pulsed laser irradiation technique for the dechlorination of hexachlorobenzene (HCB), a model pollutant, without additional catalysts or supports. The effects of the laser parameters, including the laser wavelength and power, on the dechlorination efficiency, were also investigated. The optimized results showed that a lower laser wavelength of 266 nm with 10 mJ/pulse power exhibited the highest dechlorination efficiency with 95% within 15 min. In addition, the laser beam effect was examined by designing the direct-pulsed laser single and multipath irradiation system. The results showed that improving the laser beam profile resulted in more than 95% dechlorination efficiency within 5 min. Thus, the dechlorination reaction proceeded much faster as the surface area that the laser beam came in contact with increased due to the multipath system than the single pathway. Gas chromatography identified benzene as the final product of HCB with pentachlorobenzene (PCB), tetrachlorobenzene (TeCB), trichlorobenzene (TCB), dichlorobenzene (DCB), and chlorobenzene (CB) as intermediate products. The mechanism of HCB dechlorination was explained by a comparison of theoretical calculations with the experimental results. The present study reports an advanced technique for the complete dechlorination of chlorobenzenes, which holds great application potential in environmental remediation.
Show more [+] Less [-]Zebrafish and water microbiome recovery after oxytetracycline exposure Full text
2021
Almeida, Ana Rita | Domingues, Inês | Henriques, Isabel
Oxytetracycline (OTC) is a broad-spectrum antibiotic widely used in aquaculture, resulting in contamination of aquatic environments. In a previous study, we observed significant effects of OTC sublethal concentrations in zebrafish, its microbiome and the water bacterial community. Here we assessed the extent to which these effects are reversible after a recovery period. Zebrafish adults were exposed to OTC (10,000 μg/L) via water exposure. Effects were analyzed at 5 days (5 dE) and 2 months (2 mE) of exposure and recovery was assessed at 5 days (5dPE) and 1 month (1mPE) after exposure Impacts were observed in fish energetic reserves and in fish and water microbiomes structure, being significant even at 5 dE. At energetic reserves level, the effect in cellular energy allocation (CEA) was dependent on the exposure time: initially CEA increased while after 2 mE CEA decreased. At microbiome level, diversity was not affected but the richness of the water microbiome significantly decreased at 2 mE.Regarding the post-exposure period, at CEA level, organisms seem to recover. In water and gut microbiomes OTC effects were also attenuated after exposure ceases, indicating a recovery. Even so, the structure of water exposed community remained significantly different towards the control, while richness of this community significantly increased at 1mPE. During exposure the relative abundance of 11 and 16 genera was significantly affected in the gut and water microbiomes, respectively, though these numbers decreased to 4 and 8 genera in the post-exposure period. At functional level during exposure 12 and 13 pathways were predicted to be affected in zebrafish gut and water microbiomes respectively, while post-exposure few pathways remained significantly affected. Hence, our results suggest a recovery of the fish fitness as well as of the water and intestine microbiomes after exposure ceases. Even so, some of the effects caused by OTC remain significant after this recovery period.
Show more [+] Less [-]Acute and subacute oral toxicity of propylene glycol enantiomers in mice and the underlying nephrotoxic mechanism Full text
2021
Zhou, Yixi | Zhao, Xijing | Hu, Weiping | Ruan, Fengkai | He, Chengyong | Huang, Jiyi | Zuo, Zhenghong
Propylene glycol (PG; 1,2-propanediol) has been commonly used as a food additive and vehicle in pharmaceutical preparations. PG can form rectus (R-) enantiomers and sinister (S-) enantiomers. Herein, Kunming mice were used as the animal model to evaluate the acute and subacute oral toxicity of R-PG, S-PG and RS-PG (1:1 racemic mixture of R-PG and S-PG). The median lethal doses of R-PG, S-PG and RS-PG administered by oral gavage to mice were 22.81 g/kg, 26.62 g/kg and 24.92 g/kg, respectively. In the 28-day oral subacute toxicity study, the body weight, organ weights, serum biochemical, and renal histology were examined. There was no difference in subacute toxicity among R-PG, S-PG and RS-PG. The administration of 1 and 5 g/kg/day PG for 28 days caused nephrotoxicity. The kidney somatic index and levels of blood urea nitrogen exhibited a significant increase. Moreover, the activities of superoxide dismutase, catalase, and glutathione peroxidase significantly decreased after the treatment with PG. The levels of malondialdehyde, tumor necrosis factor α, interleukin 1β, and interleukin 6 significantly increased in the kidney. The results show that the nephrotoxic effects of PG are induced by oxidative stress, and the activation of the inflammatory response is mediated by the NF-κB signaling pathway. Together, these findings provide information on R-PG, S-PG and RS-PG treatments for the risk assessment of toxicity and effects on human health.
Show more [+] Less [-]Quercetin antagonizes imidacloprid-induced mitochondrial apoptosis through PTEN/PI3K/AKT in grass carp hepatocytes Full text
2021
Miao, Zhiruo | Miao, Zhiying | Wang, Shengchen | Shi, Xu | Xu, Shiwen
Imidacloprid (IMI) is widely used in agriculture, and is toxic to non-target aquatic species. Quercetin (Que) is a flavonoid abundant in fruits and vegetables that exhibits anti-oxidant activity. In the present study, we treated grass carp hepatocytes (L8824) with 0.1 μM Que and/or 1 mM IMI for 24 h to explore the effect of Que on IMI-induced mitochondrial apoptosis. We found that IMI exposure enhanced reactive oxygen species (ROS) generation, inhibiting the activities of SOD, CAT and T-AOC, exacerbating the accumulation of MDA, aggravating the expression of mitochondrial apoptosis pathway (Cyt-C, BAX, Caspase9 and Caspase3) related genes and decreased the expression of anti-apoptosis gene B-cell lymphoma-2 (Bcl-2). In addition, Que and IMI co-treatment significantly restored the activity of anti-oxidant enzymes, downregulated ROS level and apoptosis rate, thereby alleviating the depletion of mitochondrial membrane potential (ΔΨm) and the expression of cytochrome c (Cyt-C), Bcl-2-associated X (BAX), and cysteinyl aspartate specific proteinases (Caspase9 and 3), increasing the Bcl-2 level. Furthermore, we elucidated that Que could inhibit the expression of phosphatase and tensin homolog deleted on chromosome 10 (PTEN), thus activating phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT) pathway to attenuate IMI-induced apoptosis. Molecular docking provides assertive evidence for the interaction between Que ligand and PTEN receptor. Consequently, these results indicate that Que effectively antagonizes IMI-induced mitochondrial apoptosis in grass carp hepatocytes via regulating the PTEN/PI3K/AKT pathway.
Show more [+] Less [-]Hollow porous molecularly imprinted polymers as emerging adsorbents Full text
2021
Bhogal, Shikha | Kuldip Kaur, | Mohiuddin, Irshad | Kumar, Sandeep | Lee, Jechan | Brown, Richard J.C. | Kim, Ki Hyun | Malik, Ashok Kumar
Hollow porous molecularly imprinted polymers (HPMIPs) are identified as promising adsorbents with many advantageous properties (e.g., large number of imprinted cavities, highly accessible binding sites, controllable pore structure, and fast mass transfer). Because of such properties, HPMIPs can exhibit improved binding capacity and kinetics to make analyte molecules readily interact with a greater number of recognition sites on the imprinted shell. This review highlights the synthesis and utility of HPMIPs as adsorbents to cover diverse targets of interest (e.g., endocrine disrupting chemicals, pharmaceuticals, pesticides, and heavy metal ions). The overall potential of HPMIPs is thus discussed in the context of analytical chemistry with particular focus on the efficient extraction of trace-level targets from complex matrices.
Show more [+] Less [-]