Refine search
Results 1871-1880 of 8,074
Associations of exposure to perfluoroalkyl substances individually and in mixtures with persistent infections: Recent findings from NHANES 1999–2016 Full text
2021
Bulka, Catherine M. | Avula, Vennela | Fry, Rebecca C.
Certain viruses and parasites can cause persistent infections that often co-occur and have been associated with substantial morbidity and mortality. Separate lines of research indicate exposures to per- and polyfluoroalkyl substances (PFAS) suppress the immune system. We hypothesized that PFAS exposures might systematically increase susceptibility to persistent infections resulting in a higher pathogen burden. We used data from 8778 individuals (3189 adolescents, 5589 adults) in the nationally-representative U.S. National Health and Nutrition Examination Survey (NHANES) 1999–2016 to examine cross-sectional associations between serum concentrations of four highly detected PFAS (PFOS, PFOA, PFHxS, PFNA) with the presence of antibodies to cytomegalovirus, Epstein Barr virus, hepatitis C and E, herpes simplex 1 and 2, HIV, T. gondii, and Toxocara spp. Seropositivity was summed to calculate a pathogen burden score reflecting the total number of infections. Separate survey-weighted multivariable regression models were fitted to analyze PFAS individually and quantile g-computation was used to analyze PFAS mixtures. Among adolescents, 38.7% had at least one persistent infection while 14.9% had two or more; among adults, these percentages were 48.0% and 19.7%. Each PFAS was individually associated with significantly higher pathogen burdens and the most pronounced associations were observed in adolescents [e.g., among adolescents, a doubling of PFOS was associated with 30% (95% CI: 25–36%) higher pathogen burden]. Quantile g-computation revealed PFAS mixtures as a whole were also associated with higher pathogen burdens. Taken together, these results suggest PFAS exposure may increase susceptibility to and foster the clustering of persistent infections, particularly among adolescents. Since persistent infections are important contributors to long-term health, prospective data are needed to confirm these findings.
Show more [+] Less [-]Peat-forest burning smoke in Maritime Continent: Impacts on receptor PM2.5 and implications at emission sources Full text
2021
Lan, Yang | Tham, Jackson | Jia, Shiguo | Sarkar, Sayantan | Fan, Wei Hong | Reid, Jeffrey S. | Ong, Choon Nam | Yu, Liya E.
This study characterizes the impacts of transported peat-forest (PF) burning smoke on an urban environment and evaluates associated source burning conditions based on carbon properties of PM₂.₅ at the receptor site. We developed and validated a three-step classification that enables systematic and more rapid identification of PF smoke impacts on a tropical urban environment with diverse emissions and complex atmospheric processes. This approach was used to characterize over 300 daily PM₂.₅ data collected during 2011–2013, 2015 and 2019 in Singapore. A levoglucosan concentration of ≥0.1 μg/m³ criterion indicates dominant impacts of transported PF smoke on urban fine aerosols. This approach can be used in other ambient environments for practical and location-dependent applications. Organic carbon (OC) concentrations (as OC indicator) can be an alternate to levoglucosan for assessing smoke impacts on urban environments. Applying the OC concentration indicator identifies smoke impacts on ∼80% of daily samples in 2019 and shows an accuracy of 51–86% for hourly evaluation. Following the systematic identification of urban PM₂.₅ predominantly affected by PF smoke in 2011–2013, 2015 and 2019, we assessed the concentration ratio of char-EC/soot-EC as an indicator of smoldering- or flaming-dominated burning emissions. When under the influence of transported PF smoke, the mean concentration ratio of char-EC to soot-EC in urban PM₂.₅ decreased by >70% from 8.2 in 2011 to 2.3 in 2015 but increased to 3.8 in 2019 (p < 0.05). The reversed trend with a 65% increase from 2015 to 2019 shows stronger smoldering relative to flaming, indicating a higher level of soil moisture at smoke origins, possibly associated with rewetting and revegetating peatlands since 2016.
Show more [+] Less [-]Mercury, microcystins and Omega-3 polyunsaturated fatty acids in farmed fish in eutrophic reservoir: Risk and benefit assessment Full text
2021
Jing, Min | Lin, Dan | Lin, Jing | Li, Qiuhua | Yan, Haiyu | Feng, Xinbin
Fish is an important source of nutritional omega-3 (n-3) polyunsaturated fatty acids, but it also readily accumulates toxic mercury (Hg) and microcystins (MC) in eutrophic aquatic systems. In China, farmed fish was widely consumed, and aquaculture has caused pervasive eutrophication of freshwater lakes, resulting in the increasing accumulation of MC in fish tissue. To assess the risk-benefit of consuming farmed fish, 205 fish samples of 10 primary species were collected from the eutrophic Wujiangdu (WJD) Reservoir, SW China. The contents of Hg, microcystin-RR (MC-RR), microcystin-LR (MC-LR), and polyunsaturated fatty acids (PUFA) in fish were analyzed. The results showed that THg and MeHg concentrations in all fish sampls were well below the safety limit (500 ng/g w.w) established by the Standardization Administration of China, with average values of 22.9 ± 22.8 and 6.0 ± 6.6 ng/g wet weight (w.w.), respectively. Average concentrations of MC-RR and MC-LR were 40 ± 80 and 50 ± 80 ng/g w.w., respectively. MC-RR and MC-LR concentrations in fish were significantly higher in silver carp and black carp than in perch and catfish (p < 0.05). In nutritional terms, average concentrations of n-3 PUFA and the eicosapentaenoic (EPA) + docosahexaenoic acids (DHA) of fish were 2.0 ± 2.5 and 1.4 ± 0.5 mg/g w.w., respectively. The risk-benefit assessment suggests that the n-3 PUFA benefits from consuming all farmed fish species in the WJD Reservoir outweigh the adverse effects of MeHg. However, except for perch, most fish species still pose a high MC-LR exposure risk that created a requirement for fish consumption advisories and monitoring. Consequently, more attention should be paid on the health risk of combined exposure to pollutants by aquatic product consumption.
Show more [+] Less [-]1H-NMR metabolomics profiling of zebra mussel (Dreissena polymorpha): A field-scale monitoring tool in ecotoxicological studies Full text
2021
Hani, Younes Mohamed Ismail | Prud’Homme, Sophie Martine | Nuzillard, Jean-Marc | Bonnard, Isabelle | Robert, Christelle | Nott, Katherine | Ronkart, Sébastien | Dedourge-Geffard, Odile | Geffard, Alain
Biomonitoring of aquatic environments requires new tools to characterize the effects of pollutants on living organisms. Zebra mussels (Dreissena polymorpha) from the same site in north-eastern France were caged for two months, upstream and downstream of three wastewater treatment plants (WWTPs) in the international watershed of the Meuse (Charleville-Mézières “CM” in France, Namur “Nam” and Charleroi “Cr” in Belgium). The aim was to test ¹H-NMR metabolomics for the assessment of water bodies’ quality. The metabolomic approach was combined with a more “classical” one, i.e., the measurement of a range of energy biomarkers: lactate dehydrogenase (LDH), lipase, acid phosphatase (ACP) and amylase activities, condition index (CI), total reserves, electron transport system (ETS) activity and cellular energy allocation (CEA). Five of the eight energy biomarkers were significantly impacted (LDH, ACP, lipase, total reserves and ETS), without a clear pattern between sites (Up and Down) and stations (CM, Nam and Cr). The metabolomic approach revealed variations among the three stations, and also between the upstream and downstream of Nam and CM WWTPs. A total of 28 known metabolites was detected, among which four (lactate, glycine, maltose and glutamate) explained the observed metabolome variations between sites and stations, in accordance with chemical exposure levels. Metabolome changes suggest that zebra mussel exposure to field contamination could alter their osmoregulation and anaerobic metabolism capacities. This study reveals that lactate is a potential biomarker of interest, and ¹H-NMR metabolomics can be an efficient approach to assess the health status of zebra mussels in the biomonitoring of aquatic environments.
Show more [+] Less [-]A review on the valorisation of food waste as a nutrient source and soil amendment Full text
2021
O’Connor, James | Hoang, Son A. | Bradney, Lauren | Dutta, Shanta | Xiong, Xinni | Tsang, Daniel C.W. | Ramadass, Kavitha | Vinu, Ajayan | Kirkham, M.B. | Bolan, Nanthi S.
Valorisation of food waste offers an economical and environmental opportunity, which can reduce the problems of its conventional disposal. Food waste is commonly disposed of in landfills or incinerated, causing many environmental, social, and economic issues. Large amounts of food waste are produced in the food supply chain of agriculture: production, post-harvest, distribution (transport), processing, and consumption. Food waste can be valorised into a range of products, including biofertilisers, bioplastics, biofuels, chemicals, and nutraceuticals. Conversion of food waste into these products can reduce the demand of fossil-derived products, which have historically contributed to large amounts of pollution. The variety of food chain suppliers offers a wide range of feedstocks that can be physically, chemically, or biologically altered to form an array of biofertilisers and soil amendments. Composting and anaerobic digestion are the main large-scale conversion methods used today to valorise food waste products to biofertilisers and soil amendments. However, emerging conversion methods such as dehydration, biochar production, and chemical hydrolysis have promising characteristics, which can be utilised in agriculture as well as for soil remediation. Valorising food waste into biofertilisers and soil amendments has great potential to combat land degradation in agricultural areas. Biofertilisers are rich in nutrients that can reduce the dependability of using conventional mineral fertilisers. Food waste products, unlike mineral fertilisers, can also be used as soil amendments to improve productivity. These characteristics of food wastes assist in the remediation of contaminated soils. This paper reviews the volume of food waste within the food chain and types of food waste feedstocks that can be valorised into various products, including the conversion methods. Unintended consequences of the utilisation of food waste as biofertilisers and soil-amendment products resulting from their relatively low concentrations of trace element nutrients and presence of potentially toxic elements are also evaluated.
Show more [+] Less [-]Multiple roles of humic acid in the photogeneration of reactive bromine species using a chemical probe method Full text
2021
Wang, Kun | Zhu, Xiangyu | Chen, Baoliang
Photosensitization of natural organic matter (NOM) is an important natural source of reactive bromine species (RBrS) in the environment. Up to now, quantitative information about RBrS was mainly based on model sensitizers. Whether the behavior of model compounds could represent those of complex NOM remains unknown. In this study, we employed a chemical probe (3,5-dimethyl-1-H-pyrazole) to measure RBrS in humic acid (HA)-containing solutions and investigated their influential factors. The formation rate, decay rate constant, steady-state concentration, and lifetimes of RBrS were 3.87(±0.16) × 10⁻¹³ mol L⁻¹·s⁻¹, 1.99(±0.20) × 10⁴ s⁻¹, 2.04(±0.13) × 10⁻¹⁷ mol L⁻¹, and 5.06(±1.05) × 10⁻⁵ s, respectively. Measured steady-state concentrations of RBrS were 3–5 orders of magnitude lower than those in model sensitizer system. Results showed that HA drove the RBrS generation, and about 0.12–0.70% of triplet-state HA (³HA*) would be transformed into RBrS. HA structures strongly affected this process. Phenolic-like groups suppressed the formation, while aromatic ketone-like moieties facilitated it. Last, HA also altered the transformation pathways. The contribution of ·OH dependent and direct oxidation pathways was almost equal, while the direct oxidation was predominant in the model system. Thus, careful consideration should be taken into photochemical formation of RBrS in NOM-involved solution, due to their complexity and multiple roles.
Show more [+] Less [-]Mesoporous ball-milling iron-loaded biochar for enhanced sorption of reactive red: Performance and mechanisms Full text
2021
Feng, Kanghong | Xu, Zibo | Gao, Bin | Xu, Xiaoyun | Zhao, Ling | Qiu, Hao | Cao, Xinde
In order to solve the low sorption capacity of pristine biochar for anionic pollutants, e.g., reactive red 120 (RR120), a novel mesoporous Fe-biochar composite was fabricated in this study by combination of Fe-loading and ball-milling methods. The ball-milling Fe-biochar composite could effectively remove RR120 by up to 90.1 mg g⁻¹ at pH of 7.5, and slightly alkaline condition was preferred. Adsorption kinetics showed that ball-milling Fe-biochar composite could quickly sorb RR120 with the rate constant (k₂) of 2.07 g mg⁻¹ min⁻¹ (pH = 7.5). Positive surface charge and large surface area were responsible for the outstanding removal performance of RR120 by ball-milling Fe-biochar composite: (1) The adscititious Fe would be converted to β-FeOOH during pyrolysis, which significantly improved the zeta potential of biochar and thus facilitated the electrostatic adsorption for RR120, which contributed to 42.3% and 85.5% at pH of 3 and 7.5, respectively; (2) Ball-milling effectively increased the specific surface area and uniformed the pore size distribution, which could provide more sorption sites and expedite the diffusion of RR120 molecules, shortening the time from several hours to less than 15 min. Findings of this study not only provide a feasible modification method for biochar to adsorb anionic pollutants efficiently and rapidly, but also help to reveal the roles of Fe-loading and ball-milling in enhancing adsorption capacity.
Show more [+] Less [-]Effects of artificial light at night (ALAN) on gene expression of Aquatica ficta firefly larvae Full text
2021
Chen, Yun-Ru | Wei, Wei-Lun | Tzeng, David T.W. | Owens, Avalon C.S. | Tang, Hsin-Chieh | Wu, Chia-Shong | Lin, Shih-Shun | Zhong, Silin | Yang, En-Cheng
Artificial light at night (ALAN) is a major driver of firefly population declines, but its physiological effects are not well understood. To investigate the impact of ALAN on firefly development, we exposed larval Aquatica ficta fireflies to ALAN for two weeks. High larval mortality was observed in the periods of 1–68 days and 106–134 days post-treatment, which may represent the short- and long-term impacts of ALAN. We then profiled the transcriptome of larval Aquatica ficta fireflies following two weeks of ALAN exposure. A total of 1262 (1.67% out of 75777 unigenes) were differentially expressed in the treatment group: 1157 were down-regulated, and 105 were up-regulated. Up-regulated unigenes were related to regulation of hormone levels, ecdysteroid metabolic process, and response to stimulus; down-regulated unigenes were related to negative regulation of insulin receptor signaling, germ cell development, oogenesis, spermatid development, and regulation of neuron differentiation. Transcriptome results suggest that the endocrine, reproductive, and neural development of firefly larvae could be impaired by even relatively brief period of ALAN exposure. This report contributes a much-needed molecular perspective to the growing body of research documenting the fitness impacts of ALAN on bioluminescent fireflies.
Show more [+] Less [-]Assessment of epigenotoxic profiles of Dongjiang River: A comprehensive of chemical analysis, in vitro bioassay and in silico approach Full text
2021
Hu, Junjie | Liu, Jinhuan | Lv, Xiaomei | Yu, Lili | Lan, Shanhong | Li, Yanliang | Yang, Yan
This research explored the occurrence, epigenetic toxic profiling and main toxic pollutants of POPs in surface water of Dongjiang River, southern China. The concentrations of selected POPs including polycyclic aromatic hydrocarbons (PAHs), endocrine disrupting chemicals (EDCs), phthalate esters (PAEs) and polybrominated diphenyl ethers (PBDEs) of surface water from 18 sites were investigated. ∑₁₆PAHs and ∑₄EDCs were at a moderate level, while ∑₆PAEs and ∑₆PBDEs had low pollution levels. PAHs, EDCs and PAEs showed higher concentrations in dry season than those in wet season, and the loading of selected POPs in tributaries was higher than those in mainstream due to intensive manufactures and lower runoff volume. Moreover, activities of DNA methyltransferase (DNMT)1, histone deacetylase (HDAC2, HDAC8) were confirmed to be sensitive indicators for epigenetic toxicity. The DNMT1-mediated epigenetic equivalency toxicity of organic extracts in Dongjiang River were more serious than those of HDAC2 and HDAC8. Correlation analysis shown binding affinity between POPs and DNMT1, HDAC2 and HDAC8 could be regarded as toxic equivalency factors. Risk assessment suggested that 4-nonylphenol and bisphenol A were the largest contributors to epigenetic risk. This study is the first attempt to quantify epigenetic toxicity and epigenetic risk evaluation of river water.
Show more [+] Less [-]Multiple metal exposure and obesity: A prospective cohort study of adults living along the Yangtze River, China Full text
2021
Zhong, Qi | Qin, Qi-rong | Yang, Wan-jun | He, Jia-liu | Zhu, Jin-liang | Zhu, Zhen-yu | Huang, Fen
Association between long-term exposure to multiple metals and obesity remains inconclusive, and prospective evidence on the region along the Yangtze River was limited. Thus, our study aimed to examine the association of multiple metal exposure and obesity. We measured baseline urine levels of 22 metals of 982 adults living along the Yangtze River, incidence of obesity was calculated from body mass index (BMI) and waist circumference (WC) measured at follow-up survey. Cox proportional hazards models were used to examine the hazard ratios (HR) and 95% confidence interval (CI) for the association between urinary metals and obesity, and the mixing effect of metals on obesity was estimated by using quantile g-computation. In multiple-metal models, arsenic was significantly associated with BMI/obesity, with the HR in the highest quartiles of 0.33 (95% CI: 0.16, 0.69; p-trend = 0.004). The HRs for WC/obesity of arsenic and molybdenum were 0.49 (95% CI: 0.32, 0.75 for the fourth vs. first quartile; p-trend = 0.002) and 1.83 (95% CI: 1.25, 2.70; p-trend = 0.001), respectively. Quantile g-computation mixtures approach showed a significantly negative joint effect of multiple metals on WC/obesity, with the HR of 0.26 (95% CI: 0.14, 0.47; p < 0.001) when increasing all seventeen metals by one quartile. Our study suggests that all seventeen metal mixed exposure may be negatively associated with obesity. Further cohort studies are needed to confirm these findings and clarify the underlying biological mechanisms.
Show more [+] Less [-]