Refine search
Results 1881-1890 of 62,387
Can C-budget of natural capital be restored through conservation agriculture in a tropical and subtropical environment? Full text
2022
De Moraes Sa, Joao Carlos | Lal, Rattan | Briedis, Clever | De Oliveira Ferreira, Ademir | Tivet, Florent | Inagaki, Thiago Massao | Potma Gonçalves, Daniel Ruiz | Canalli, Lutécia Beatriz | Bürkner dos Santos, Josiane | Romaniw, Jucimare
Conservation agriculture through no-till based on cropping systems with high biomass-C input, is a strategy to restoring the carbon (C) lost from natural capital by conversion to agricultural land. We hypothesize that cropping systems based on quantity, diversity and frequency of biomass-C input above soil C dynamic equilibrium level can recover the natural capital. The objectives of this study were to: i) assess the C-budget of land use change for two contrasting climatic environments, ii) estimate the C turnover time of the natural capital through no-till cropping systems, and iii) determine the C pathway since soil under native vegetation to no-till cropping systems. In a subtropical and tropical environment, three types of land use were used: a) undisturbed soil under native vegetation as the reference of pristine level; b) degraded soil through continuous tillage; and c) soil under continuous no-till cropping system with high biomass-C input. At the subtropical environment, the soil under continuous tillage caused loss of 25.4 Mg C ha−1 in the 0–40 cm layer over 29 years. Of this, 17 Mg C ha−1 was transferred into the 40–100 cm layers, resulting in the net negative C balance for 0–100 cm layer of 8.4 Mg C ha−1 with an environmental cost of USD 1968 ha−1. The 0.59 Mg C ha−1 yr−1 sequestration rate by no-till cropping system promote the C turnover time (soil and vegetation) of 77 years. For tropical environment, the soil C losses reached 27.0 Mg C ha−1 in the 0–100 cm layer over 8 years, with the environmental cost of USD 6155 ha−1, and the natural capital turnover time through C sequestration rate of 2.15 Mg C ha−1 yr−1 was 49 years. The results indicated that the particulate organic C and mineral associate organic C fractions are the indicators of losses and restoration of C and leading C pathway to recover natural capital through no-till cropping systems.
Show more [+] Less [-]X-ray absorption spectroscopy evidence of sulfur-bound Cadmium in the Cd-hyperaccumulator Solanum nigrum and the non-accumulator Solanum melongena Full text
2021
Pons, Marie-Noëlle | Collin, Blanche | Doelsch, Emmanuel | Chaurand, Perrine | Fehlauer, Till | Levard, Clément | Keller, Catherine | Rose, Jérôme
It has been proposed that non-protein thiols and organic acids play a major role in cadmium phytoavailability and distribution in plants. In the Cd-hyperaccumulator Solanum nigrum and non-accumulator Solanum melongena, the role of these organic ligands in the accumulation and detoxification mechanisms of Cd are debated. In this study, we used X-ray absorption spectroscopy to investigate Cd speciation in these plants (roots, stem, leaves) and in the soils used for their culture to unravel the plants responses to Cd exposure. The results show that Cd in the 100 mg.kg-1 Cd-doped clayey loam soil is sorbed onto iron oxyhydroxides. In both S. nigrum and S. melongena, Cd in roots and fresh leaves is mainly bound to thiol ligands, with a small contribution of inorganic S ligands in S. nigrum leaves. We interpret the Cd binding to sulfur ligands as detoxification mechanisms, possibly involving the sequestration of Cd complexed with glutathione or phytochelatins in the plant vacuoles. In the stems, results show an increase binding of Cd to -O ligands (>50% for S. nigrum). We suggest that Cd is partly complexed by organic acids for transportation in the sap.
Show more [+] Less [-]Sorption of PAHs to microplastic and their bioavailability and toxicity to marine copepods under co-exposure conditions Full text
2020
Sørensen, Lisbet | Rogers, Emilie | Altin, Dag | Salaberria, Iurgi | Booth, Andy
Organic chemical pollutants associated with microplastic (MP) may represent an alternative exposure route for these chemicals to marine biota. However, the bioavailability of MP-sorbed organic pollutants under conditions where co-exposure occurs from the same compounds dissolved in the water phase has rarely been studied experimentally, especially where pollutant concentrations in the two phases are well characterized. Importantly, higher concentrations of organic pollutants on ingested MP may be less bioavailable to aquatic organisms than the same chemicals present in dissolved form in the surrounding water. In the current study, the sorption kinetics of two model polycyclic aromatic hydrocarbons (PAHs; fluoranthene and phenanthrene) to MP particles in natural seawater at 10 and 20 °C were studied and the bioavailability of MP-sorbed PAHs to marine copepods investigated. Polyethylene (PE) and polystyrene (PS) microbeads with mean diameters ranging from 10-200 µm were used to identify the role of MP polymer type and size on sorption mechanisms. Additionally, temperature dependence of sorption was investigated. Results indicated that adsorption dominated at lower temperatures and for smaller MP (10 µm), while absorption was the prevailing process for larger MP (100 µm). Monolayer sorption dominated at lower PAH concentrations, while multilayer sorption dominated at higher concentrations. PE particles representing ingestible (10 µm) and non-ingestible (100 µm) MP for the marine copepod species Acartia tonsa and Calanus finmarchicus were used to investigate the availability and toxicity of MP-sorbed PAHs. Studies were conducted under co-exposure conditions where the PAHs were also present in the dissolved phase (Cfree), thereby representing more environmentally relevant exposure scenarios. Cfree reduction through MP sorption was reflected in a corresponding reduction of lethality and bioaccumulation, with no difference observed between ingestible and non-ingestible MP. This indicates that only free dissolved PAHs are significantly bioavailable to copepods under co-exposure conditions with MP-sorbed PAHs. | publishedVersion
Show more [+] Less [-]Impact of urban planning on air quality since 1998 in Thionville area (Moselle, France)Passive samplers method and lichens sampling | Impact de l'aménagement urbain de l'agglomération thionvilloise (Moselle, France) sur la qualité de l'air depuis 1998Méthode des échantillonneurs passifs et relevés lichéniques Full text
2001
Laval-Gilly, Philippe | Falla, Jaïro | Morlot, Dominique
Factors affecting farmers’ use of organic and inorganic fertilizers in South Asia Full text
2021
Aryal, Jeetendra P | Sapkota, Tek Bahadur | Krupnik, Timothy J. | Rahut, Dil B | Jat, Mangi Lal | Stirling, Clare M
Factors affecting farmers’ use of organic and inorganic fertilizers in South Asia Full text
2021
Aryal, Jeetendra P | Sapkota, Tek Bahadur | Krupnik, Timothy J. | Rahut, Dil B | Jat, Mangi Lal | Stirling, Clare M
Fertilizer, though one of the most essential inputs for increasing agricultural production, is a leading cause of nitrous oxide emissions from agriculture, contributing significantly to global warming. Therefore, understanding factors affecting farmers’ use of fertilizers is crucial to develop strategies to improve its efficient use and to minimize its negative impacts. Using data from 2528 households across the Indo-Gangetic Plains in India, Nepal, and Bangladesh, this study examines the factors affecting farmers’ use of organic and inorganic fertilizers for the two most important cereal crops – rice and wheat. Together, these crops provide the bulk of calories consumed in the region. As nitrogen (N) fertilizer is the major source of global warming and other environmental effects, we also examine the factors contributing to its overuse. We applied multiple regression models to understand the factors influencing the use of inorganic fertilizer, Heckman models to understand the likelihood and intensity of organic fertilizer (manure) use, and a probit model to examine the over-use of N fertilizer. Our results indicate that various socio-economic and geographical factors influence the use of organic and inorganic fertilizers in rice and wheat. Across the study sites, N fertilizer over-use is the highest in Haryana (India) and the lowest in Nepal. Across all locations, farmers reported a decline in manure application, concomitant with a lack of awareness of the principles of appropriate fertilizer management that can limit environmental externalities. Educational programs highlighting measures to improving nutrient-use-efficiency and reducing the negative externalities of N fertilizer over-use are proposed to address these problems.
Show more [+] Less [-]Factors affecting farmers’ use of organic and inorganic fertilizers in South Asia Full text
2021
Aryal, Jeetendra Prakash | Sapkota, Tek Bahadur | Krupnik, Timothy J. | Rahut, Dil Bahadur | Jat, Mangi Lal | Stirling, Clare M.
Fertilizer, though one of the most essential inputs for increasing agricultural production, is a leading cause of nitrous oxide emissions from agriculture, contributing significantly to global warming. Therefore, understanding factors affecting farmers’ use of fertilizers is crucial to develop strategies to improve its efficient use and to minimize its negative impacts. Using data from 2528 households across the Indo-Gangetic Plains in India, Nepal, and Bangladesh, this study examines the factors affecting farmers’ use of organic and inorganic fertilizers for the two most important cereal crops – rice and wheat. Together, these crops provide the bulk of calories consumed in the region. As nitrogen (N) fertilizer is the major source of global warming and other environmental effects, we also examine the factors contributing to its overuse. We applied multiple regression models to understand the factors influencing the use of inorganic fertilizer, Heckman models to understand the likelihood and intensity of organic fertilizer (manure) use, and a probit model to examine the over-use of N fertilizer. Our results indicate that various socio-economic and geographical factors influence the use of organic and inorganic fertilizers in rice and wheat. Across the study sites, N fertilizer over-use is the highest in Haryana (India) and the lowest in Nepal. Across all locations, farmers reported a decline in manure application, concomitant with a lack of awareness of the principles of appropriate fertilizer management that can limit environmental externalities. Educational programs highlighting measures to improving nutrient-use-efficiency and reducing the negative externalities of N fertilizer over-use are proposed to address these problems.
Show more [+] Less [-]Factors affecting farmers’ use of organic and inorganic fertilizers in South Asia Full text
2021
Aryal, J.P. | Sapkota, T. | Krupnik, T.J. | Rahut, D.B. | Jat, M.L. | Stirling, C.
Fertilizer, though one of the most essential inputs for increasing agricultural production, is a leading cause of nitrous oxide emissions from agriculture, contributing significantly to global warming. Therefore, understanding factors affecting farmers’ use of fertilizers is crucial to develop strategies to improve its efficient use and to minimize its negative impacts. Using data from 2528 households across the Indo-Gangetic Plains in India, Nepal, and Bangladesh, this study examines the factors affecting farmers’ use of organic and inorganic fertilizers for the two most important cereal crops – rice and wheat. Together, these crops provide the bulk of calories consumed in the region. As nitrogen (N) fertilizer is the major source of global warming and other environmental effects, we also examine the factors contributing to its overuse. We applied multiple regression models to understand the factors influencing the use of inorganic fertilizer, Heckman models to understand the likelihood and intensity of organic fertilizer (manure) use, and a probit model to examine the over-use of N fertilizer. Our results indicate that various socio-economic and geographical factors influence the use of organic and inorganic fertilizers in rice and wheat. Across the study sites, N fertilizer over-use is the highest in Haryana (India) and the lowest in Nepal. Across all locations, farmers reported a decline in manure application, concomitant with a lack of awareness of the principles of appropriate fertilizer management that can limit environmental externalities. Educational programs highlighting measures to improving nutrient-use-efficiency and reducing the negative externalities of N fertilizer over-use are proposed to address these problems. | 51480-51496
Show more [+] Less [-]Effectiveness Of Grass Filters In Reducing Phosphorus And Sediment Runoff Full text
2012
Al-Wadaey, Ahmed | Wortmann, S. Charles | Franti, G. Thomas | Shapiro, A. Charles | Eisenhauer, E.Dean
Surface water contamination can often be reduced by passing runoff water through perennial grass filters. Research was conducted in 2006 to 2008 to evaluate the size of cool season grass filters consisting primarily of tall fescue (Festuca arundinacea Schreb) with some orchard grass (Dactylis glomerata L.) relative to drainage area size in reducing runoff sediment and phosphorus (P). The soil was Pohocco silt loam Typic Eutrochrepts with a median slope of 5.5 %. The grass filters occupying 1.1 and 4.3 % of the plot area were compared with no filter with four replications. The filters were planted in the V-shaped plot outlets which were 3.7x11.0 m in size. The filter effect on sediment and P concentration was determined from four natural runoff events when nearly all plots had runoff. Filter effect on runoff volume and contaminant load was determined using total runoff and composites of samples collected from 12 runoff events. Sediment concentration was reduced by 25 % with filters compared with no filter (from 1.10 to 1.47 gL(-1)), but P concentration was not affected. The 1.1 and 4.3 % filters, respectively, compared with having no grass filter, reduced: runoff volume by 54 and 79 %; sediment load by 67 and 84 % (357 to 58 kgha(-1)); total P load by 68 and 76 % (0.58 to 0.14 kgha(-1)); particulate P (PP) load by 66 and 82 % (0.39 to 0.07 kgha(-1)); and dissolved reactive P (DRP) load by 73 and 66 % (0.2 to 0.07 kgha(-1)), respectfully. A snowmelt runoff event had 56 % greater DRP concentration compared with rainfall-induced runoff events. Grass filters reduced sediment and P load largely by reducing runoff volume rather than reducing concentration. Well-designed and well-placed grass filters that occupy 1.0 to 1.5 % of the drainage area and intercept a uniform flow of runoff from a drainage area can reduce sediment and nutrient loss in runoff by greater than 50 %.
Show more [+] Less [-]A comprehensive assessment of endocrine-disrupting chemicals in an Indian food basket: Levels, dietary intakes, and comparison with European data Full text
2021
Sharma, Brij Mohan | Bharat, Girija K. | Chakraborty, Paromita | Martiník, Jakub | Audy, Ondřej | Kukučka, Petr | Přibylová, Petra | Kukreti, Praveen Kumar | Sharma, Anežka | Kalina, Jiří | Steindal, Eirik Hovland | Nizzetto, Luca
A comprehensive assessment of endocrine-disrupting chemicals in an Indian food basket: Levels, dietary intakes, and comparison with European data Full text
2021
Sharma, Brij Mohan | Bharat, Girija K. | Chakraborty, Paromita | Martiník, Jakub | Audy, Ondřej | Kukučka, Petr | Přibylová, Petra | Kukreti, Praveen Kumar | Sharma, Anežka | Kalina, Jiří | Steindal, Eirik Hovland | Nizzetto, Luca
Endocrine-disrupting chemicals (EDCs) in diet are a health concern and their monitoring in food has been introduced in the European Union. In developing countries, EDC dietary exposure data are scarce, especially from areas perceived as pollution hotspots, including industrialized countries like India. Several persistent organic pollutants (POPs) act as EDCs and pose a pressure to human health mainly through dietary exposure. In the present study a range of organochlorine pesticides (OCPs), polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs), dioxins and furans were measured in several food items collected in an Indian urban (Delhi) and a rural area (Dehradun). Food basket contamination data were used to estimate dietary exposure and compare it with that of the average European population estimated from available monitoring data. All targeted contaminants were found in most food items, especially in dairies and meat products. OCPs were the main contributors. Food supplied to Delhi's markets had higher contamination than that supplied to the peri-urban market in Dehradun. Despite looser control and restrictions, Indian dietary exposure of OCPs and PBDEs were comparable with that of Europe and were lower for PCBs and dioxins. Higher meat consumption in Europe only partly explained this pattern which was driven also by the higher residues in some European food items. A substantial part of endocrine disrupting potential in the diet derives from food and animal feeds internationally traded between developed and developing countries. With increasingly globalized food systems, internationally harmonized policies on EDC in food can lead to better protection of health in both these contexts. | publishedVersion
Show more [+] Less [-]A comprehensive assessment of endocrine-disrupting chemicals in an Indian food basket: Levels, dietary intakes, and comparison with European data Full text
2021
Sharma, Brij Mohan | Bharat, Girija K. | Chakraborty, Paromita | Martiník, Jakub | Audy, Ondřej | Kukučka, Petr | Přibylová, Petra | Kukreti, Praveen Kumar | Sharma, Anežka | Kalina, Jiří | Steindal, Eirik Hovland | Nizzetto, Luca
Endocrine-disrupting chemicals (EDCs) in diet are a health concern and their monitoring in food has been introduced in the European Union. In developing countries, EDC dietary exposure data are scarce, especially from areas perceived as pollution hotspots, including industrialized countries like India. Several persistent organic pollutants (POPs) act as EDCs and pose a pressure to human health mainly through dietary exposure. In the present study a range of organochlorine pesticides (OCPs), polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs), dioxins and furans were measured in several food items collected in an Indian urban (Delhi) and a rural area (Dehradun). Food basket contamination data were used to estimate dietary exposure and compare it with that of the average European population estimated from available monitoring data. All targeted contaminants were found in most food items, especially in dairies and meat products. OCPs were the main contributors. Food supplied to Delhi's markets had higher contamination than that supplied to the peri-urban market in Dehradun. Despite looser control and restrictions, Indian dietary exposure of OCPs and PBDEs were comparable with that of Europe and were lower for PCBs and dioxins. Higher meat consumption in Europe only partly explained this pattern which was driven also by the higher residues in some European food items. A substantial part of endocrine disrupting potential in the diet derives from food and animal feeds internationally traded between developed and developing countries. With increasingly globalized food systems, internationally harmonized policies on EDC in food can lead to better protection of health in both these contexts. | publishedVersion
Show more [+] Less [-]A comprehensive assessment of endocrine-disrupting chemicals in an Indian food basket: Levels, dietary intakes, and comparison with European data Full text
2021
Sharma, Brij Mohan | Bharat, Girija K. | Chakraborty, Paromita | Martiník, Jakub | Audy, Ondřej | Kukučka, Petr | Přibylová, Petra | Kukreti, Praveen Kumar | Sharma, Anežka | Kalina, Jiří | Steindal, Eirik Hovland | Nizzetto, Luca
Endocrine-disrupting chemicals (EDCs) in diet are a health concern and their monitoring in food has been introduced in the European Union. In developing countries, EDC dietary exposure data are scarce, especially from areas perceived as pollution hotspots, including industrialized countries like India. Several persistent organic pollutants (POPs) act as EDCs and pose a pressure to human health mainly through dietary exposure. In the present study, a range of organochlorine pesticides (OCPs), polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs), dioxins and furans were measured in several food items collected from Indian urban (Delhi) and peri-urban (Dehradun) areas. Food basket contamination data were used to estimate EDC dietary exposure and compare it with that of the average European population estimated from available monitoring data. All the target contaminants were found in most food items, especially in dairies and meat products. OCPs were the main contributers to the measured EDC contamination. Food supplied to Delhi's markets had higher EDC contamination than that supplied to the peri-urban market in Dehradun. Despite lax compliance and control measures, Indian dietary exposure of OCPs and PBDEs were comparable with that of Europe and were lower for PCBs and dioxins. Higher meat consumption in Europe only partly explained this pattern which was driven also by the higher EDC residues in some European food items. A substantial part of endocrine disrupting potential in the diet derives from food and animal feeds internationally traded between developed and developing countries. With increasingly globalized food systems, internationally harmonized policies on EDC content in food can lead to better protection of health in both these contexts.
Show more [+] Less [-]Monitoring the occurrence of microplastic ingestion in otariids along the peruvian and chilean coasts Full text
2020
Pérez Venegas, Diego J. | Toro Valdivieso, Constanza | Ayala, Félix | Brito, Beatriz | Iturra, Lunna | Arriagada, Maite | Seguel, Mauricio | Barrios, Carmen | Sepúlveda, Maritza | Oliva, Doris | Cárdenas Alayza, Susana | Urbina, Mauricio A. | Jorquera, Alberto | Castro Nallar, Eduardo | Galbán Malagón, Cristóbal
Repeated reports of microplastic pollution in the marine pinniped diet have emerged in the last years. However, only few studies address the drivers of microplastics presence and the potential implications for monitoring microplastic pollution in the ocean. This study monitored their in the scats (N = 205) of four pinniped species/subspecies at five different locations in the southern Pacific Ocean (Peru and Chile). Samples from all rookeries contained microplastics, and overall, 68% of the examined scats contained fragments/fibers, mostly blue colored. We confirmed that 81.5% of the fragments/fibers were anthropogenic in origin , but only 30% were polymers. Scats from Juan Fernandez Archipelago presented higher microplastic concentrations than continental rookeries. Also, the common diet in each location may influence the levels found in the samples. This study presents a useful non-invasive technique to track plastic pollution in top predator diets as bioindicators for future surveillance/management plans applied to different location. | Rufford Foundation: N 18815-1. Dirección de Investigación y Doctorados, Universidad Andres Bello. Comisión Nacional de Investigación Científica y Tecnológica (CONICYT), CONICYT FONDECYT: 11150548, 116504, 111609059. Instituto Antártico Chileno Grant: INACh RT_12_17. Conicyt PCI: REDI 170292, REDI 170403. Ministerio de Economia, Fomento y Turismo through Iniciativa Científica Milenio (Núcleo Milenio INVASAL). Direccion de Investigación Universidad de Variarais: DIUV 38/2013. Morris Animal Foundation fellowship: N D16ZO-413. Saint Louis Zoo. Chicago Zoological Society. Kansas City Zoo. Woodland Park Zoo.
Show more [+] Less [-]The effect of long-term use on the Catch efficiency of Biodegradable gillnets Full text
2020
Grimaldo, Eduardo | Herrmann, Bent | Jacques, Nadine | Kubowicz, Stephan | Cerbule, Kristine | Su, Biao | Larsen, Roger B. | Vollstad, Jørgen
The effect of long-term use on the catch efficiency of biodegradable gillnets was investigated during commercial fishing trials and in controlled lab aging tests. The relative catch efficiency between biodegradable and nylon gillnets was evaluated over three consecutive fishing seasons for Atlantic cod (Gadus morhua) in Norway. The biodegradable gillnets progressively lost catch efficiency over time, as they caught 18.4%, 40.2%, and 47.4% fewer fish than the nylon gillnets during the first, second, and third season, respectively. A 1000-hour aging test revealed that both materials began to degrade after just 200 h and that biodegradable gillnets degraded faster than the nylon gillnets. Infrared spectroscopy revealed that the chemical structure of the biodegradable polymer changed more than the nylon. Although less catch efficient than nylon gillnets, biodegradable gillnets have great potential for reducing both capture in lost fishing gear and plastic pollution at sea, which are major problems in fisheries worldwide. | publishedVersion
Show more [+] Less [-]Solid-solution partitioning of Rare Earth Elements in mine-tailings and soils in China: experimental results and multi-surface modelling Full text
2018
Janot, Noemie | Huot, Hermine | Otero-Fariña, Alba | Leguédois, Sophie | Groenenberg, Jan E.
Solid-solution partitioning of Rare Earth Elements in mine-tailings and soils in China: experimental results and multi-surface modelling. Interfaces Against Pollution
Show more [+] Less [-]