Refine search
Results 1881-1890 of 1,956
Immobilization of aluminum with mucilage secreted by root cap and root border cells is related to aluminum resistance in Glycine max L Full text
2013
Cai, Miaozhen | Wang, Ning | Xing, Chenghua | Wang, Fangmei | Wu, Kun | Du, Xing
The root cap and root border cells (RBCs) of most plant species produced pectinaceous mucilage, which can bind metal cations. In order to evaluate the potential role of root mucilage on aluminum (Al) resistance, two soybean cultivars differing in Al resistance were aeroponic cultured, the effects of Al on root mucilage secretion, root growth, contents of mucilage-bound Al and root tip Al, and the capability of mucilage to bind Al were investigated. Increasing Al concentration and exposure time significantly enhanced mucilage excretion from both root caps and RBCs, decreased RBCs viability and relative root elongation except roots exposed to 400 μM Al for 48 h in Al-resistant cultivar. Removal of root mucilage from root tips resulted in a more severe inhibition of root elongation. Of the total Al accumulated in root, mucilage accounted 48-72 and 12-27 %, while root tip accounted 22-52 and 73-88 % in Al-resistant and Al-sensitive cultivars, respectively. A (27)Al nuclear magnetic resonance spectrum of the Al-adsorbed mucilage showed Al tightly bound to mucilage. Higher capacity to exclude Al in Al-resistant soybean cultivar is related to the immobilization and detoxification of Al by the mucilage secreted from root cap and RBCs.
Show more [+] Less [-]Solubility analysis and disposal options of combustion residues from plants grown on contaminated mining area Full text
2013
Kovacs, Helga | Szemmelveisz, Katalin | Palotas, Arpad Bence
Biomass, as a renewable energy source, is an excellent alternative for the partial replacement of fossil fuels in thermal and electric energy production. A new fuel type as biomass for energy utilisation includes ligneous plants with considerable heavy metal content. The combustion process must be controlled during the firing of significant quantities of contaminated biomass grown on brownfield lands. By implementing these measures, air pollution and further soil contamination caused by the disposal of the solid burning residue, the ash, can be prevented. For the test samples from ligneous plants grown on heavy metal-contaminated fields, an ore mine (already closed for 25 years) was chosen. With our focus on the determination of the heavy metal content, we have examined the composition of the soil, the biomass and the combustion by-products (ash, fly ash). Our results confirm that ash resulting from the combustion must be treated as toxic waste and its deposition must take place on hazardous waste disposal sites. Biomass of these characteristics can be burnt in special combustion facility that was equipped with means for the disposal of solid burning residues as well as air pollutants.
Show more [+] Less [-]Validation of the species sensitivity distribution in retrospective risk assessment of herbicides at the river basin scale—the Scheldt river basin case study Full text
2013
Jesenska, Sona | Nemethova, Sabina | Blaha, Ludek
Species sensitivity distribution (SSD) is commonly used in prospective risk assessment to derive predicted no-effect concentrations, toxicity exposure ratios, and environmental quality standards for individual chemicals such as pesticides. The application of SSD in the retrospective risk assessment of chemical mixtures at the river basin scale (i.e., the estimation of "multiple substance potentially affected fractions" [msPAFs]) has been suggested, but detailed critical assessment of such an application is missing. The present study investigated the impact of different data validation approaches in a retrospective model case study focused on seven herbicides monitored at the Scheldt river basin (Belgium) between 1998 and 2009. The study demonstrated the successful application of the SSD approach. Relatively high impacts of herbicides on aquatic primary producers were predicted. Often, up to 40 % of the primary producer communities were affected, as predicted by chronic msPAF, and in some cases, the predicted impacts were even more pronounced. The risks posed by the studied herbicides decreased during the 1998-2009 period, along with decreasing concentrations of highly toxic pesticides such as simazine or isoproturon. Various data validation approaches (the removal of duplicate values and outliers, the testing of different exposure durations and purities of studied herbicides, etc.) substantially affected SSD at the level of individual studied compounds. However, the time-consuming validation procedures had only a minor impact on the outcomes of the retrospective risk assessment of herbicide mixtures at the river basin scale. Selection of the appropriate taxonomic group for SSD calculation and selection of the species-specific endpoint (i.e., the most sensitive or average value per species) were the most critical steps affecting the final risk values predicted. The present validation study provides a methodological basis for the practical use of SSD in the retrospective risk assessment of chemical mixtures.
Show more [+] Less [-]Spatial distribution and mobility of organic carbon (POC and DOC) in a coastal Mediterranean environment (Saronikos Gulf, Greece) during 2007–2009 period Full text
2013
Evangeliou, Nikolaos | Florou, Heleny
Particulate (POC) and dissolved organic carbon (DOC) is an important parameter for the pollution assessment of coastal marine systems, especially those affected by anthropogenic, domestic, and industrial activities. In the present paper, a similar marine system (Saronikos Gulf) located in the west-central Aegean Sea (eastern Mediterranean Sea) was examined, in terms of the temporal and spatial distribution of organic carbon (POC and DOC), with respect to marine sources and pathways. POC was maximum in winter in the Saronikos Gulf, due to the bloom of phytoplankton, whereas in the Elefsis Bay (located in the north side of the Saronikos Gulf) in summer, since phytoplankton grazes in the Bay in the end of summer (except for winter). Approximately 60 % of the bulk DOC of the water column was estimated as non-refractory (labile and semi-labile), due to the major anthropogenic, domestic, and industrial effects of the region and the shallow depths. The spatial distribution of POC and DOC mainly affects the northeastern section of the Gulf, since that region has been accepted major organic discharges for a long time period, in connection to the relatively long renewal times of its waters.
Show more [+] Less [-]Bioaugmentation of polyethylene succinate-contaminated soil with Pseudomonas sp. AKS2 results in increased microbial activity and better polymer degradation Full text
2013
Tribedi, Prosun | Sil, Alok K.
Pseudomonas sp. AKS2 isolated from soil degrades polyethylene succinate (PES) efficiently in the laboratory. However, this organism may not be able to degrade PES with similar efficiency in a natural habitat. Since in situ remediation is preferred for the effective removal of recalcitrant materials like plastic, in the current study, bioaugmentation potential of this organism was investigated. To investigate the potential of the AKS2 strain to bioaugment the PES-contaminated soil, a microcosm-based study was carried out wherein naturally attenuated, biostimulated, and AKS2-inoculated (bioaugmented) soil samples were examined for their ability to degrade PES. The results showed better degradation of PES by bioaugmented soil than other microcosms. Consistent with it, a higher number of PES-degrading organisms were found in the bioaugmented microcosm. The bioaugmented microcosm also exhibited a higher level of average well color development in BiOLOG ECO plate assay than the other two. The corresponding Shannon–Weaver index and Gini coefficient revealed a higher soil microbial diversity of bioaugmented microcosm than the others. This was further supported by community-level physiological profile of three different microcosms wherein we have observed better utilization of different carbon sources by bioaugmented microcosms. Collectively, these results demonstrate that bioaugmentation of PES-contaminated soil with AKS2 not only enhances polymer degradation but also increases microbial diversity. Bioaugmentation of soil with AKS2 enhances PES degradation without causing damage to soil ecology. Thus, Pseudomonas sp. AKS2 has the potential to be implemented as a useful tool for in situ bioremediation of PES.
Show more [+] Less [-]Biochemical effects of acetaminophen in aquatic species: edible clams Venerupis decussata and Venerupis philippinarum Full text
2013
Antunes, S. C. | Freitas, Rosa | Figueira, E. | Gonçalves, Fernando | Nunes, Bruno
Biochemical effects of acetaminophen in aquatic species: edible clams Venerupis decussata and Venerupis philippinarum Full text
2013
Antunes, S. C. | Freitas, Rosa | Figueira, E. | Gonçalves, Fernando | Nunes, Bruno
Acetaminophen (paracetamol) is one of the most used pharmaceutical drugs, due to its antipyretic and analgesic properties that turn it into a primary choice in varied pathologies and conditions. However, and despite its massive use, acetaminophen is not exempt of adverse effects, especially when administered in over dosage, which are related to the formation of toxic metabolites by oxidative pathways. It is thus possible to observe that toxicity caused by acetaminophen is usually mediated by reactive oxygen species and can result in multiple effects, ranging from protein denaturation to lipid peroxidation and DNA damage. The occurrence of acetaminophen has been reported in the aquatic environment, being important to address the potential exertion of toxic effects on nontarget environmentally exposed organisms. The present study intended to characterize the effects of acute acetaminophen exposure on physiological traits (antioxidant defense, oxidative damage) of two species of bivalves, namely, the edible clams Venerupis decussata and Venerupis philippinarum. Results showed a significant increase in all oxidative stress biomarkers, evidencing the bioactivation of acetaminophen into a deleterious prooxidant, triggering the onset of deleterious effects. Furthermore, strong interspecific differences were observed among responses of the two tested species, which was a major issue due to intrinsic ecological implications when one considers that both species share the same habitat.
Show more [+] Less [-]Biochemical effects of acetaminophen in aquatic species: edible clams Venerupis decussata and Venerupis philippinarum Full text
2013 | 1000
Antunes, S. C. | Freitas, Rosa | Figueira, E. | Gonçalves, Fernando | Nunes, Bruno
Acetaminophen (paracetamol) is one of the most used pharmaceutical drugs, due to its antipyretic and analgesic properties that turn it into a primary choice in varied pathologies and conditions. However, and despite its massive use, acetaminophen is not exempt of adverse effects, especially when administered in over dosage, which are related to the formation of toxic metabolites by oxidative pathways. It is thus possible to observe that toxicity caused by acetaminophen is usually mediated by reactive oxygen species and can result in multiple effects, ranging from protein denaturation to lipid peroxidation and DNA damage. The occurrence of acetaminophen has been reported in the aquatic environment, being important to address the potential exertion of toxic effects on nontarget environmentally exposed organisms. The present study intended to characterize the effects of acute acetaminophen exposure on physiological traits (antioxidant defense, oxidative damage) of two species of bivalves, namely, the edible clams Venerupis decussata and Venerupis philippinarum. Results showed a significant increase in all oxidative stress biomarkers, evidencing the bioactivation of acetaminophen into a deleterious prooxidant, triggering the onset of deleterious effects. Furthermore, strong interspecific differences were observed among responses of the two tested species, which was a major issue due to intrinsic ecological implications when one considers that both species share the same habitat.
Show more [+] Less [-]The response of mulberry trees after seedling hardening to summer drought in the hydro-fluctuation belt of Three Gorges Reservoir Areas Full text
2013
Huang, Xiaohui | Liu, Yun | Li, Jiaxing | Xiong, Xingzheng | Chen, Yang | Yin, Xiaohua | Feng, Dalan
Interest has developed in the potential of mulberry (Morus alba), a woody perennial, for revegetating the hydro-fluctuation belt of the Three Gorges Reservoir due to its resistance to water-logging stress. To be useful, the trees must also be able to withstand dry conditions in summer when temperatures can be very high and droughts become severe quickly. Here, we report a study in which mulberry seedlings were grown in a greenhouse under a variety of simulated soil water conditions reflecting potential summer scenarios in the hydro-fluctuation belt of the Three Gorges Reservoir Area. We compared the responses of two pretreatment groups of mulberry seedlings to different levels of drought stress. The pretreatment groups differed with respect to drought hardening: the daily-managed (DM) group had relative soil moisture held constant in the range 70-80 %, while the drought-hardened (DH) group had relative soil moisture held constant at 40-50 %. Following the month-long pretreatment of seedlings, the two groups of young trees (DM and DH) were then respectively subjected to three levels of drought stress for a month: normal watering, moderate drought stress, and severe drought stress. A series of measurements comparing the physiological status of the plants in the two groups were then made, and the following results were obtained: (1) As drought stress increased, the heights, base diameters, root surface areas, photosynthetic rates (Pn), stomatal conductances (Gs), and transpiration rates (Tr) of the mulberry trees in both groups (DM and DH) decreased significantly, while the specific root area and abscisic acid (ABA) contents had increasing trends. Root activity and instantaneous water use efficiency of mulberry trees in both groups (DM and DH) were all raised under drought stress conditions than under normal watering, but the root/shoot ratio and leaf water potential were lowered. (2) At the same level of soil water content, the heights, base diameters, root/shoot ratios, root surface areas, specific root areas, photosynthetic rates (Pn), stomatal conductances (Gs), and transpiration rates (Tr) of the young mulberry trees in the DH were all significantly higher than those of the control group (DM). Leaf water potential, instantaneous water use efficiency, and abscisic acid content of DH were all significantly lower than DM. Under different degrees of drought stress, the growth of mulberry trees will be inhibited, but the trees can respond to the stress by increasing the root absorptive area and enhancing capacity for water retention. Mulberry trees demonstrate strong resistance to drought stress, and furthermore drought resistance can be improved by drought hardening during the seedling stage.
Show more [+] Less [-]Biosorption and biodegradation of Acid Orange 7 by Enterococcus faecalis strain ZL: optimization by response surface methodological approach Full text
2013
Lim, Chi Kim | Bay, Hui Han | Aris, Azmi | Abdul Majid, Zaiton | Ibrahim, Zaharah
Reactive dyes account for one of the major sources of dye wastes in textile effluent. In this study, decolorization of the monoazo dye, Acid Orange 7 (AO7) by the Enterococcus faecalis strain ZL that isolated from a palm oil mill effluent treatment plant has been investigated. Decolorization efficiency of azo dye is greatly affected by the types of nutrients and the size of inoculum used. In this work, one-factor-at-a-time (method and response surface methodology (RSM) was applied to optimize these operational factors and also to study the combined interaction between them. Analysis of AO7 decolorization was done using Fourier transform infrared (FTIR) spectroscopy, desorption study, UV–Vis spectral analysis, field emission scanning electron microscopy (FESEM), and high performance liquid chromatography (HPLC). The optimum condition via RSM for the color removal of AO7 was found to be as follows: yeast extract, 0.1 % w/v, glycerol concentration of 0.1 % v/v, and inoculum density of 2.5 % v/v at initial dye concentration of 100 mg/L at 37 °C. Decolorization efficiency of 98 % was achieved in only 5 h. The kinetic of AO7 decolorization was found to be first order with respect to dye concentration with a k value of 0.87/h. FTIR, desorption study, UV–Vis spectral analysis, FESEM, and HPLC findings indicated that the decolorization of AO7 was mainly due to the biosorption as well as biodegradation of the bacterial cells. In addition, HPLC analyses also showed the formation of sulfanilic acid as a possible degradation product of AO7 under facultative anaerobic condition. This study explored the ability of E. faecalis strain ZL in decolorizing AO7 by biosorption as well as biodegradation process.
Show more [+] Less [-]Distribution of metals and trace elements in adult and juvenile penguins from the Antarctic Peninsula area Full text
2013
Jerez, Silvia | Motas, Miguel | Benzal, Jesús | Díaz, Julia | Vidal, Virginia | D’Amico, Verónica | Barbosa, Andrés
The presence of metals in the Antarctic environment is principally a natural phenomenon caused by geochemical characteristics of the region, although some anthropogenic activities can increase these natural levels. Antarctic penguins present several of the characteristics of useful sentinels of pollution in Antarctica such as they are long-lived species situated at the top of food web. The concentrations of Al, Cr, Mn, Fe, Ni, Cu, Zn, As, Se, Cd, and Pb were determined by inductively coupled plasma–mass spectrometry in samples of liver, kidney, muscle, bone, feather, and stomach contents of gentoo, chinstrap, and Adélie penguin (12 adults, five juveniles) from carcasses of naturally dead individuals collected opportunistically in the Antarctic Peninsula area. The obtained results showed that accumulation and magnification of several elements can be occurring, so that Cd and Se reached levels potentially toxic in some specimens. The presence of human activities seems to be increasing the presence of toxic metals such as Mn, Cr, Ni, or Pb in penguins.
Show more [+] Less [-]Iophenoxic acid derivatives as markers of oral baits to wildlife : New tools for their detection in tissues of a game species and safety considerations for human exposure Full text
2013
Sage, Mickael | Fourel, Isabelle | Lahoreau, Jennifer | Siat, Vivien | Berny, Philippe | Rossi, Sophie
The bait-marker iophenoxic acid (IPA) and its derivatives are increasingly used for evaluating and optimizing the cost-effectiveness of baiting campaigns on wildlife, particularly on game species such as the wild boar. We aimed to determine whether concentrations of the three main IPA derivatives ethyl, methyl and propyl-IPA measured on thoracic liquid extracts (TLE) of hunted wild boars may be representative of two exposure doses, 40 and 200 mg, from 20 to 217 days after ingestion. Then we developed a method of detection of the three IPA derivatives by LC/ESI-MS-MS in muscle and liver to evaluate the suitability of these two other tissues for monitoring the marked bait consumption and for measuring available residues in the meat of marked animals. Three semi-captive wild boars received 40 mg of each IPA derivative, three received 200 mg, and three, as controls, did not receive IPA. Blood serum was sampled 20, 197 or 217 days after IPA exposure according to animals and to the derivative. Wild boars were shot by gun after the different times of serum sampling times, and TLE, muscle and liver were sampled. Our results suggest that TLE is not a relevant tissue for quantitatively expressing IPA exposure. Due to interference, no analytical method was validated on TLE containing digestive material. On the other hand, quantifications in the muscle and particularly in the liver could discriminate wild boars that had ingested the two IPA doses from 20 days until 7 months after exposure, especially for the two long term markers ethyl and propyl-IPA. So IPA quantifications in the liver sampled on hunted animals appear to be a reliable tool for monitoring bait consumption in the field at a large scale. Nevertheless, whatever the ingested dose, ethyl- and propyl-IPA concentrations measured in the muscle and the liver of tested animals until 217 days after exposure, remained higher than 0.01 mg/kg, the Maximal Residue Limit (MRL) is recommended for molecules for which no toxicological data are available. Based on the range of IPA residues available in these two tissues, implications for humans consuming marked animals are discussed.
Show more [+] Less [-]