Refine search
Results 1881-1890 of 4,309
Presence of β-Lactamases Encoding Genes in Soil Samples from Different Origins Full text
2017
Furlan, JoãoPedro Rueda | Stehling, ElianaGuedes
The functional classification of β-lactamases is done through assessing their ability to hydrolyze specific β-lactams and its inactivation by inhibitors. This study investigated the β-lactamases encoding genes present in soil samples from different origins (landfill, preservation area, and soil from a farm). Genes codifying for ESBL enzymes bla SHV, bla TEM₋₁₁₆ and bla OXA₋₁ were found in all analyzed samples. Gene for ESBL bla CTX₋M₋₁₄ was detected in the landfill and farm soil samples, but they were not found in the preservation area, while bla OXA₋₄₈₋ₗᵢₖₑ was present just in the soil from the landfill. The gene for the MBL bla VIM was found in the soil sample from a farm. The results indicate that bla SHV, bla TEM₋₁₁₆, and bla OXA₋₁ genes are scattered in soils with and without potential contaminants; however, genes bla CTX₋M₋₁₄, bla OXA₋₄₈, and bla VIM were detected just in polluted areas.
Show more [+] Less [-]Occurrence and behaviour of pharmaceutical compounds in a Portuguese wastewater treatment plant: Removal efficiency through conventional treatment processes Full text
2017
Gaffney, Vanessa de Jesus | Cardoso, Vitor Vale | Cardoso, Eugénia | Teixeira, Ana Paula | Araújo, José Martins de | Benoliel, Maria João | Almeida, Cristina Maria Martins
Wastewater treatments can eliminate or remove a substantial amount of pharmaceutical active compounds (PhACs), but there may still be significant concentrations of them in effluents discharged into surface water bodies. Beirolas wastewater treatment plant (WWTP) is located in the Lisbon area and makes its effluent discharges into Tagus estuary (Portugal). The main objective of this study is to quantify a group of 32 PhACs in the different treatments used in this WWTP. Twelve sampling campaigns of wastewater belonging to the different treatments were made in 2013–2014 in order to study their removal efficiency. The wastewaters were analysed by solid phase extraction (SPE) and ultra-performance liquid chromatography coupled with tandem mass detection (UPLC–MS/MS). The anti-diabetics were the most frequently found in wastewater influent (WWI) and wastewater effluent (WWE) (208 and 1.7 μg/L, respectively), followed by analgesics/antipyretics (135 μg/L and < LOQ, respectively), psychostimulants (113 and 0.49 μg/L, respectively), non-steroidal anti-inflammatory drugs (33 and 2.6 μg/L, respectively), antibiotics (5.2 and 1.8 μg/L, respectively), antilipidemics (1.6 and 0.24 μg/L, respectively), anticonvulsants (1.5 and 0.63 μg/L, respectively) and beta blockers (1.3 and 0.51 μg/L, respectively). A snapshot of the ability of each treatment step to remove these target PhACs is provided, and it was found that global efficiency is strongly dependent on the efficiency of secondary treatment. Seasonal occurrence and removal efficiency was also monitored, and they did not show a significant seasonal trend.
Show more [+] Less [-]Integrated Anaerobic-Aerobic Biodegradation of Multiple Contaminants Including Chlorinated Ethylenes, Benzene, Toluene, and Dichloromethane Full text
2017
Yoshikawa, Miho | Zhang, Ming | Toyota, Koki
Complete bioremediation of soils containing multiple volatile organic compounds (VOCs) remains a challenge. To explore the possibility of complete bioremediation through integrated anaerobic-aerobic biodegradation, laboratory feasibility tests followed by alternate anaerobic-aerobic and aerobic-anaerobic biodegradation tests were performed. Chlorinated ethylenes, including tetrachloroethylene (PCE), trichloroethylene (TCE), cis-dichloroethylene (cis-DCE), and vinyl chloride (VC), and dichloromethane (DCM) were used for anaerobic biodegradation, whereas benzene, toluene, and DCM were used for aerobic biodegradation tests. Microbial communities involved in the biodegradation tests were analyzed to characterize the major bacteria that may contribute to biodegradation. The results demonstrated that integrated anaerobic-aerobic biodegradation was capable of completely degrading the seven VOCs with initial concentration of each VOC less than 30 mg/L. Benzene and toluene were degraded within 8 days, and DCM was degraded within 20 to 27 days under aerobic conditions when initial oxygen concentrations in the headspaces of test bottles were set to 5.3% and 21.0%. Dehalococcoides sp., generally considered sensitive to oxygen, survived aerobic conditions for 28 days and was activated during the subsequent anaerobic biodegradation. However, degradation of cis-DCE was suppressed after oxygen exposure for more than 201 days, suggesting the loss of viability of Dehalococcoides sp., as they are the only known anaerobic bacteria that can completely biodegrade chlorinated ethylenes to ethylene. Anaerobic degradation of DCM following previous aerobic degradation was complete, and yet-unknown microbes may be involved in the process. The findings may provide a scientific and practical basis for the complete bioremediation of multiple contaminants in situ and a subject for further exploration.
Show more [+] Less [-]Determination of Arsenic in Water Samples by Using a Green Hydrophobic-Hydrophilic Switchable Liquid-Solid Dispersive Microextraction Method Full text
2017
Ali, Jamshed | Tuzen, Mustafa | Kazi, TasneemG.
A simple and green preconcentration method of hydrophobic to hydrophilic switchable liquid-solid dispersive microextraction (HSL-SDM) has been first time introduced as separation method for arsenic ion in real water samples. Multiwall carbon nanotube (MWCNT) was immobilized with diethylenetriamine (DETA) and then used as solid phase adsorbent for the determination of trace level of arsenic ion by HSL-SDM method prior to analysis by hydride generation atomic absorption spectrometry. Reversibly hydrophobic-hydrophilic switchable of functionalized MWCNT can occur due to the exposing of carbon dioxide (CO₂) as anti-solvent trigger. The reversibly hydrophobic-hydrophilic switchable phenomena of immobilized MWCNT in the liquid-solid dispersive microextraction were checked by using FT-IR and SEM. The optimized analytical condition for arsenic ion analysis such as enrichment factor and limits of detection were obtained 83 and 3.05 ng L⁻¹, respectively. Accuracy of the developed HSL-SDM method was confirmed by the analysis of certified reference materials. Our developed HSL-SDM method was successfully applicable for measurements of arsenic ions in real water samples.
Show more [+] Less [-]Speciation and Transformation of Sulfur in Freshwater Sediments: a Case Study in Southwest China Full text
2017
Sulfur (S) is one of the most redox-sensitive elements and has a marked impact on the geochemical cycling of biogenic elements in freshwater sediments. Current understanding of the speciation of sedimentary S, and of the processes regulating it, is insufficient. In this study, the speciation and spatial variations of S and iron (Fe) in sediments (soils) from Lake Hongfeng, one of the largest freshwater lakes in Southwest China, were investigated using X-ray absorption near-edge structure (XANES) spectroscopy and diffusive gradient in thin film technique (DGT). The results show that S in sediments and soils was composed of seven fractions in different electronic oxidation states (EOSs), including (i) reduced S (R-S, G1, EOS = − 1), (ii) lowly oxidized S (LO-S, including G2-G5; EOS = 0, 0.5, 2, and 3.7), and (iii) highly oxidized S (HO-S, including G6 and G7; EOS = 5 and 6). Proportional differences of S speciation in sediments and soils indicated that HO-S is largely reduced to LO-S and R-S during depositional processes. The HO-S fraction decreased in the top surface sediments and then increased in the deeper layers, whereas the R-S fraction showed the opposite trend, suggesting that sulfate reduction and re-oxidation processes occurred in the sediments. High ratios of soluble Fe/S provided a favorable foundation for the reduction and burial of sedimentary S. The speciation and spatial variations of S in freshwater sediments are controlled by complex environmental factors, including terrigenous material discharges, water redox conditions, and porewater chemistry (such as for pH, Eh, and reactive Fe). Our study will help to deepen the understanding of the geochemical dynamics of S in the sediments of freshwater ecosystems.
Show more [+] Less [-]Nutrient Budgeting as an Approach to Assess and Manage the Impacts of Long-Term Irrigation Using Abattoir Wastewater Full text
2017
Matheyarasu, Raghupathi | Sheshadri, Balaji | Bolan, NanthiS. | Naidu, R.
Disposal and management of abattoir wastewater have been a long-term concern in a high meat-consuming country like Australia. Land-based application of wastewater is considered to be the most economically viable disposal method and is widely used by abattoirs. In this study, we assessed the effects of long-term abattoir wastewater irrigation on soil physical and chemical characteristics of calcareous soils. Soil samples were collected from 16 different locations with seven 5 cm depths intervals down to 35 cm. Soil properties including soil type, bulk density, moisture holding capacity, pH, electrical conductivity (EC), nitrogen (N), phosphorus (P), carbon (C) and micronutrients were measured. Soil characteristics were compared with non-irrigated soils. The study area receives annually about 327 ML of wastewater with high concentration of N and P (186 and 30.4 mg/L). Overall, the site retained 0.6 t N/ha, 0.1 t P/ha and 0.4 t of K per hectare. Irrigation for over a decade onto the study site has caused a significant change in the soil fertility. Soil total N was increased by 82% compared to non-irrigated. Similarly, soil total P concentration was increased more than sixfold. The overall results showed that the abattoir wastewater irrigation to soil caused very significant changes in soil nutrient levels. These changes indicate need to recapture the surplus nutrient, in particular N, to avoid potential leaching and off-site effects.
Show more [+] Less [-]Partial Nitritation-Anammox Granules: Short-Term Inhibitory Effects of Seven Metals on Anammox Activity Full text
2017
Val del Río, Ángeles | da Silva, Tulio | Martins, TiagoHenrique | Foresti, Eugênio | Campos, JoséLuis | Mendez, Ramón | Mosquera-Corral, Anuska
The inhibitory effect of seven different metals on the specific anammox activity of granular biomass, collected from a single stage partial nitritation/anammox reactor, was evaluated. The concentration of each metal that led to a 50% inhibition concentration (IC₅₀) was 19.3 mg Cu⁺²/L, 26.9 mg Cr⁺²/L, 45.6 mg Pb⁺²/L, 59.1 mg Zn⁺²/L, 69.2 mg Ni⁺²/L, 174.6 mg Cd⁺²/L, and 175.8 mg Mn⁺²/L. In experiments performed with granules mechanically disintegrated (flocculent-like sludge), the IC₅₀ for Cd⁺² corresponded to a concentration of 93.1 mg Cd⁺²/L. These results indicate that the granular structure might act as a physical barrier to protect anammox bacteria from toxics. Furthermore, the presence of an external layer of ammonia oxidizing bacteria seems to mitigate the inhibitory effect of the metals, as the values of IC₅₀ obtained in this study for anammox activity were higher than those previously reported for anammox granules. Additionally, the results obtained confirmed that copper is one of the most inhibitory metals for anammox activity and revealed that chromium, scarcely studied yet, has a similar potential inhibitory effect.
Show more [+] Less [-]The Distribution Variation of Polycyclic Aromatic Hydrocarbons Between Fresh Snow and Seasonal Snowpack in Campus in Changchun City, Northeast China Full text
2017
Wei, Yan | Liu, ShaSha | Wang, Zhongqiang | Wang, Zucheng | Wang, Shengzhong
Polycyclic aromatic hydrocarbons (PAHs) are scavenged from the atmosphere during snowfall, stored in the seasonal snowpack, and exchanged with PAHs in atmosphere. Thus, the PAHs in fresh snow and snowpack could reflect the PAH levels in atmosphere. This study investigated the concentrations and compositions of 16 priority-controlled PAHs in fresh snow and seasonal snowpack, as well as PAH levels in underlying soils before and after snow melting. The total concentrations of PAHs in fresh snow and snowpack ranged from 26.6 ± 4.2 to 36.9 ± 1.7 μg L⁻¹ and from 40.3 ± 4.4 to 105.9 ± 6.9 μg L⁻¹, respectively. The higher concentrations of PAHs in fresh snow compared with other areas indicated a high PAH level in atmosphere in Changchun city, presenting a potential risk to human health. Higher concentrations of total PAHs in snowpack than those in fresh snow indicated the prominent deposition of PAHs from atmosphere to snowpack in winter. In contrast, a specific reduction of five- to six-ring PAHs in the snowpack suggested that strong photolysis of five- to six-ring PAHs occurred in snowpack. The variation of PAHs in different snowpacks suggested that the deposition may be largely affected by local environment. The results of diagnostic ratios and principal component analysis (PCA) suggested that the PAHs in fresh snow and snowpack are both from a mixed source of coal combustion and from vehicle emissions. However, nonmetric multidimensional scaling (NMDS) divided fresh snow and snowpack into two groups, indicating the different contributions of coal combustion and vehicle emissions to PAHs in fresh snow and snowpack. After snowpack melting, three- to four-ring PAH levels in underlying soils showed no change, indicating that the three- to four-ring PAHs were volatilized to the atmosphere. This study indicated a risk of atmospheric PAHs in Changchun city in winter and in the beginning of spring.
Show more [+] Less [-]A review on the mechanism, risk evaluation, and prevention of coal spontaneous combustion in China Full text
2017
Kong, Biao | Li, Zenghua | Yang, Yongliang | Liu, Zhen | Yan, Daocheng
In recent years, the ecology, security, and sustainable development of modern mines have become the theme of coal mine development worldwide. However, spontaneous combustion of coal under conditions of oxygen supply and automatic exothermic heating during coal mining lead to coalfield fires. Coal spontaneous combustion (CSC) causes huge economic losses and casualties, with the toxic and harmful gases produced during coal combustion not only polluting the working environment, but also causing great damage to the ecological environment. China is the world’s largest coal producer and consumer; however, coal production in Chinese mines is seriously threatened by the CSC risk. Because deep underground mining methods are commonly adopted in Chinese coal mines, coupling disasters are frequent in these mines with the coalfield fires becoming increasingly serious. Therefore, in this study, we analyzed the development mechanism of CSC. The CSC risk assessment was performed from the aspects of prediction, detection, and determination of the “dangerous area” in a coal mine (i.e., the area most susceptible to fire hazards). A new geophysical method for CSC determination is proposed and analyzed. Furthermore, the main methods for CSC fire prevention and control and their advantages and disadvantages are analyzed. To eventually construct CSC prevention and control integration system, future developmental direction of CSC was given from five aspects. Our results can present a reference for the development of CSC fire prevention and control technology and promote the protection of ecological environment in China.
Show more [+] Less [-]Soil Contamination by Toxic Metals Near an Antarctic Refuge in Robert Island, Maritime Antarctica: A Monitoring Strategy Full text
2017
de Lima Neto, Elias | Guerra, Marcelo Braga Bueno | Thomazini, André | Daher, Mayara | de Andrade, André Medeiros | Schaefer, Carlos Ernesto G. R.
The anthropogenic effects of Antarctic refuge buildings and research stations on the surrounding soils are scarcely investigated, especially when the structures are small-sized, and sporadically used or visited. The Coppermine Peninsula (Robert Island, South Shetland Islands archipelago) possesses one of the richest flora in Antarctica, being classified as an Antarctic Specially Protected Area (ASPA). There, a small refuge (Luis Risopatrón) has been seasonally occupied for scientific purposes since 1957, although no studies on the anthropic disturbances in the surroundings soils are reported. The aim of this study was the determination of the potentially toxic metals (Cd, Cr, Cu, Mn, Ni, Pb, V, and Zn) mass fractions in surface soils (n = 40) collected at the surroundings of the Luis Risopatrón refuge. Enrichment factors (EF) and geoaccumulation index (I gₑₒ) were also calculated, using Zr as the reference element, in order to evaluate the anthropogenic impacts of these small buildings in the studied area. The main contaminants were Pb and Zn, which presented EF and I gₑₒ values ranging from 1.0 to 18.3 and from −1.8 to 3.5. The mass fractions of these elements determined after an aqua regia extraction varied from 5.4 to 102 mg kg⁻¹ Pb and from 43 to 210 mg kg⁻¹ Zn. These results highlight that a small refuge can show environmental disturbance from low to moderate, with few hotspots with heavily contaminated soils. Environmental monitoring strategy for similar refuges anywhere in Antarctica is recommended.
Show more [+] Less [-]