Refine search
Results 191-200 of 754
Combined effects of elevated CO2 and natural climatic variation on leaf spot diseases of redbud and sweetgum trees Full text
2010
McElrone, Andrew J. | Hamilton, Jason G. | Krafnick, Anthony J. | Aldea, Mihai | Knepp, Rachel G. | DeLucia, Evan H.
Atmospheric CO2 concentrations are predicted to double within the next century and alter climate regimes, yet the extent that these changes will affect plant diseases remains unclear. In this study conducted over five years, we assessed how elevated CO2 and interannual climatic variability affect Cercospora leaf spot diseases of two deciduous trees. Climatic data varied considerably between the five years and altered disease expression. Disease incidence and severity for both species were greater in years with above average rainfall. In years with above average temperatures, disease incidence for Liquidambar styraciflua was decreased significantly. When significant changes did occur, disease incidence and severity always increased under elevated CO2. Chlorophyll fluorescence imaging of leaves revealed that any visible increase in disease severity induced by elevated CO2 was mitigated by higher photosynthetic efficiency in the remaining undamaged leaf tissue and in a halo surrounding lesions. Climatic variation had a greater impact than elevated CO2 on Cercospora diseases, especially since leaf photosynthetic efficiency increased under elevated CO2.
Show more [+] Less [-]Effects of elevated atmospheric CO2 and tropospheric O3 on tree branch growth and implications for hydrologic budgeting Full text
2010
Reha, L. | King, J. | Kubiske, M. | Saliendra, N. | Teclaw, R.
The forest hydrologic budget may be impacted by increasing CO2 and tropospheric O3. Efficient means to quantify such effects are beneficial. We hypothesized that changes in the balance of canopy interception, stem flow, and through-fall in the presence of elevated CO2 and O3 could be discerned using image analysis of leafless branches. We compared annual stem flow to the results of a computerized analysis of all branches from the 2002, 2004, and 2006 annual growth whorls of 97 ten-year-old trees from the Aspen Free-Air CO2 and O3 Enrichment (Aspen FACE) experiment in Rhinelander, WI. We found significant effects of elevated CO2 and O3 on some branch metrics, and that the branch metrics were useful for predicting stem flow from birch, but not aspen. The results of this study should contribute to development of techniques for efficient characterization of effects on the forest hydrologic budget of increasing CO2 and tropospheric O3. Canopy architecture and stem flow are affected by elevated CO2 and tropospheric O3.
Show more [+] Less [-]Tissue S/N ratios and stable isotopes (δ34S and δ15N) of epilithic mosses (Haplocladium microphyllum) for showing air pollution in urban cities in Southern China Full text
2010
Xiao, Hua-Yun | Tang, Cong-Guo | Xiao, Hong-Wei | Wang, Yan-Li | Liu, Xue-Yan | Liu, Cong-Qiang
In urban cities in Southern China, the tissue S/N ratios of epilithic mosses (Haplocladium microphyllum), varied widely from 0.11 to 0.19, are strongly related to some atmospheric chemical parameters (e.g. rainwater SO42−/NH4+ ratios, each people SO2 emission). If tissue S/N ratios in the healthy moss species tend to maintain a constant ratio of 0.15 in unpolluted area, our study cities can be divided into two classes: class I (S/N > 0.15, S excess) and class II (S/N < 0.15, N excess), possibly indicative of stronger industrial activity and higher density of population, respectively. Mosses in all these cities obtained S and N from rainwater at a similar ratio. Sulphur and N isotope ratios in mosses are found significantly linearly correlated with local coal δ34S and NH4+–N wet deposition, respectively, indicating that local coal and animal NH3 are the major atmospheric S and N sources.
Show more [+] Less [-]Spatially distributed pesticide exposure assessment in the Central Valley, California, USA Full text
2010
Luo, Yuzhou | Zhang, Minghua
Field runoff is an important transport mechanism by which pesticides move into the hydrologic environment of intensive agricultural regions such as California's Central Valley. This study presents a spatially explicit modeling approach to extend Pesticide Root Zone Model (PRZM), a field-scale pesticide transport model, into basin level. The approach was applied to simulate chlorpyrifos use in the Central Valley during 2003-2007. The average value of loading as percent of use (LAPU) is 0.031%. Results of this study provide strong evidence that surface runoff generation and pesticide application timing are the two influencing factors on the spatial and temporal variability of chlorpyrifos sources from agricultural fields. This is one of the first studies in coupling GIS and field-scale models and providing simulations for the dynamics of pesticides over an agriculturally dominated landscape. The demonstrated modeling approach may be useful for implementations of best management practice (BMP) and total maximum daily load (TMDL).
Show more [+] Less [-]Dynamic modelling of atmospherically-deposited Ni, Cu, Zn, Cd and Pb in Pennine catchments (northern England) Full text
2010
Tipping, E. | Rothwell, J.J. | Shotbolt, L. | Lawlor, A.J.
Simulation modelling with CHUM-AM was carried out to investigate the accumulation and release of atmospherically-deposited heavy metals (Ni, Cu, Zn, Cd and Pb) in six moorland catchments, five with organic-rich soils, one with calcareous brown earths, in the Pennine chain of northern England. The model considers two soil layers and a third layer of weathering mineral matter, and operates on a yearly timestep, driven by deposition scenarios covering the period 1400-2010. The principal processes controlling heavy metals are competitive solid-solution partitioning of solutes, chemical interactions in solution, and chemical weathering. Agreement between observed and simulated soil metal pools and surface water concentrations for recent years was generally satisfactory, the results confirming that most contemporary soil metal is from atmospheric pollution. Metals in catchments with organic-rich soils show some mobility, especially under more acid conditions, but the calcareous mineral soils have retained nearly all anthropogenic metal inputs. Complexation by dissolved organic matter and co-transport accounts for up to 80% of the Cu in surface waters.
Show more [+] Less [-]Chemical contamination and the ecological quality of surface water Full text
2010
Baas, Jan | Kooijman, S. A. L. M.
In the assessment of the quality of surface waters, the typical procedure is that the concentration of contaminants in the surface water is monitored and subsequently compared with their respective Maximum Permissible Concentrations (MPCs). If the MPCs are not exceeded the water quality is considered to be safe. But can we be certain that this is true? We compared MPCs to observed and calculated effects of measured contaminants in Dutch surface waters and showed that effects of mixtures can cause a daphnid population to go extinct within 30 h of exposure even when MPCs are not exceeded. We conclude that there are shortcomings underlying the concepts of the MPCs. And that the MPCs aim to protect 95% of all species is not met.
Show more [+] Less [-]Metabolic diversity of the heterotrophic microorganisms and potential link to pollution of the Rouge River Full text
2010
Tiquia, S.M.
The heterotrophic microbial communities of the Rouge River were tracked using Biolog Ecoplates to understand the metabolic diversity at different temporal and spatial scales, and potential link to river pollution. Site less impacted by anthrophogenic sources (site 1), showed markedly lower metabolic diversity. The only substrates that were utilized in the water samples were carbohydrates. Sites more impacted by anthrophogenic sources (sites 8 and 9) showed higher metabolic diversity. Higher functional diversity was linked to the physico-chemical and biological properties of the water samples (i.e. higher concentrations of DO, DOC, chlorophyll, and bacterial density). Biolog analysis was found to be useful in differentiating metabolic diversity between microbial communities; in determining factors that most influence the separation of communities; and in identifying which substrates were most utilized by the communities. It can also be used as an effective ecological indicator of changes in river function attributable to urbanization and pollution.
Show more [+] Less [-]Bioavailability of residual polycyclic aromatic hydrocarbons following enhanced natural attenuation of creosote-contaminated soil Full text
2010
Juhasz, Albert L. | Smith, Euan | Waller, Natasha | Stewart, Richard | Weber, John
The impact of residual PAHs (2250 ± 71 μg total PAHs g−1) following enhanced natural attenuation (ENA) of creosote-contaminated soil (7767 ± 1286 μg total PAHs g−1) was assessed using a variety of ecological assays. Microtox™ results for aqueous soil extracts indicated that there was no significant difference in EC50 values for uncontaminated, pre- and post-remediated soil. However, in studies conducted with Eisenia fetida, PAH bioaccumulation was reduced by up to 6.5-fold as a result of ENA. Similarly, Beta vulgaris L. biomass yields were increased 2.1-fold following ENA of creosote-contaminated soil. While earthworm and plant assays indicated that PAH bioavailability was reduced following ENA, the residual PAH fraction still exerted toxicological impacts on both receptors. Results from this study highlight that residual PAHs following ENA (presumably non-bioavailable to bioremediation) may still be bioavailable to important receptor organisms such as earthworms and plants. Residual PAHs in creosote-contaminated soil following enhanced natural attenuation impacted negatively on ecological receptors.
Show more [+] Less [-]Lichen-based critical loads for atmospheric nitrogen deposition in Western Oregon and Washington Forests, USA Full text
2010
Geiser, Linda H. | Jovan, Sarah E. | Glavich, Doug A. | Porter, Matthew K.
Critical loads (CLs) define maximum atmospheric deposition levels apparently preventative of ecosystem harm. We present first nitrogen CLs for northwestern North America’s maritime forests. Using multiple linear regression, we related epiphytic-macrolichen community composition to: 1) wet deposition from the National Atmospheric Deposition Program, 2) wet, dry, and total N deposition from the Communities Multi-Scale Air Quality model, and 3) ambient particulate N from Interagency Monitoring of Protected Visual Environments (IMPROVE). Sensitive species declines of 20-40% were associated with CLs of 1-4 and 3-9 kg N ha-1 y-1 in wet and total deposition. CLs increased with precipitation across the landscape, presumably from dilution or leaching of depositional N. Tight linear correlation between lichen and IMPROVE data suggests a simple screening tool for CL exceedance in US Class I areas. The total N model replicated several US and European lichen CLs and may therefore be helpful in estimating other temperate-forest lichen CLs. Lichen-based critical loads for N deposition in western Oregon and Washington forests ranged from 3 to 9 kg ha-1 y-1, increasing with mean annual precipitation.
Show more [+] Less [-]The impact of ambient ozone on mountain spruce forests in the Czech Republic as indicated by malondialdehyde Full text
2010
Hůnová, Iva | Novotný, Radek | Uhlířová, Hana | Vráblík, Tomáš | Horálek, Jan | Lomský, Bohumír | Šrámek, Vít
Malondialdehyde (MDA), a product of lipid peroxidation and biomarker of oxidative stress, is measured over the long term in spruce Picea abies needles under real conditions in three Czech mountain border areas. The trends presented collate the MDA content in spruce needles with ambient ozone, temperature and precipitation as casual, and defoliation as a subsequent factor for the period 1994-2006. We have found the overall decreasing trends in MDA and defoliation. The highest MDA and defoliation are recorded in the Jizerske, the lowest in the Krusne hory Mts. Out of the examined variables the MDA is predicted best by mean temperature in vegetation season, median of O3 concentrations and AOT40; these three variables account for 34% of MDA1 and 36% of MDA2 variability. Our hypothesis that higher ambient O3 exposure results in higher MDA contents in P. abies needles under real conditions has not been approved.
Show more [+] Less [-]