Refine search
Results 191-200 of 5,149
A transition to white LED increases ecological impacts of nocturnal illumination on aquatic primary producers in a lowland agricultural drainage ditch Full text
2018
Grubisic, Maja | van Grunsven, Roy H.A. | Manfrin, Alessandro | Monaghan, Michael T. | Hölker, Franz
The increasing use of artificial light at night (ALAN) has led to exposure of freshwater ecosystems to light pollution worldwide. Simultaneously, the spectral composition of nocturnal illumination is changing, following the current shift in outdoor lighting technologies from traditional light sources to light emitting diodes (LED). LEDs emit broad-spectrum white light, with a significant amount of photosynthetically active radiation, and typically a high content of blue light that regulates circadian rhythms in many organisms. While effects of the shift to LED have been investigated in nocturnal animals, its impact on primary producers is unknown. We performed three field experiments in a lowland agricultural drainage ditch to assess the impacts of a transition from high-pressure sodium (HPS) to white LED illumination (color temperature 4000 K) on primary producers in periphyton. In all experiments, we compared biomass and pigment composition of periphyton grown under a natural light regime to that of periphyton exposed to nocturnal HPS or, consecutively, LED light of intensities commonly found in urban waters (approximately 20 lux). Periphyton was collected in time series (1–13 weeks). We found no effect of HPS light on periphyton biomass; however, following a shift to LED the biomass decreased up to 62%. Neither light source had a substantial effect on pigment composition. The contrasting effects of the two light sources on biomass may be explained by differences in their spectral composition, and in particular the blue content. Our results suggest that spectral composition of the light source plays a role in determining the impacts of ALAN on periphyton and that the ongoing transition to LED may increase the ecological impacts of artificial lighting on aquatic primary producers. Reduced biomass in the base of the food web can impact ecosystem functions such as productivity and food supply for higher trophic levels in nocturnally-lit ecosystems.
Show more [+] Less [-]Particle size distribution and respiratory deposition estimates of airborne perfluoroalkyl acids during the haze period in the megacity of Shanghai Full text
2018
Guo, Mengjie | Lyu, Yan | Xu, Tingting | Yao, Bo | Song, Weihua | Li, Mei | Yang, Xin | Cheng, Tiantao | Li, Xiang
This study presents the particle size distribution and respiratory deposition estimates of airborne perfluoroalkyl acids (PFAAs) during the haze period. Size-segregated haze aerosols were collected from an urban location in Shanghai using an eight-stage air sampler. The samples were analyzed for eight PFAAs using ultra-high-performance liquid chromatography tandem triple quadrupole mass spectrometry. The quantification results showed that the concentrations of particle-bound Σ 8PFAAs ranged from 0.26 to 1.90 ng m⁻³ (mean: 1.44 ng m⁻³). All of the measured PFAAs particle size distributions had a bimodal mode that peaked respectively in accumulation size range (0.4 < Dp < 2.1 μm) and coarse size ranges (Dp > 2.1 μm), but the width of each distribution somewhat varied by compound. The emission source, molecular weight, and volatility of the PFAAs were important factors influencing the size distribution of particle-bound PFAAs. Of these compounds, PFUnDA presented a strong accumulation in the fine size range (average 75% associated with particles <2.1 μm), followed by PFOA (69%) and PFDA (64%). The human risk assessment of PFOS via inhalation was addressed and followed the same pattern as the size distribution, with a 2-fold higher risk for the fine particle fraction compared to the coarse particle fraction at urban sites. Approximately 30.3–82.0% of PFAA deposition (∑PFAA: 72.5%) in the alveolar region was associated with particles <2.1 μm, although the contribution of fine particles to the total PFAAs concentration in urban air was only 28–57% (∑8PFAAs: 48%). These results suggested that fine particles are significant contributors to the deposition of PFAAs in the alveolar region of the lung.
Show more [+] Less [-]Impact of copper nanoparticles and ionic copper exposure on wheat (Triticum aestivum L.) root morphology and antioxidant response Full text
2018
Zhang, Zhenyan | Ke, Mingjing | Qu, Qian | Peijnenburg, W.J.G.M. | Lu, Tao | Zhang, Qi | Ye, Yizhi | Xu, Pengfei | Du, Benben | Sun, Liwei | Qian, Haifeng
Copper nanoparticles (nCu) are widely used in industry and in daily life, due to their unique physical, chemical, and biological properties. Few studies have focused on nCu phytotoxicity, especially with regard to toxicity mechanisms in crop plants. The present study examined the effect of 15.6 μM nCu exposure on the root morphology, physiology, and gene transcription levels of wheat (Triticum aestivum L.), a major crop cultivated worldwide. The results obtained were compared with the effects of exposing wheat to an equivalent molar concentration of ionic Cu (Cu²⁺ released from CuSO₄) and to control plants. The relative growth rate of roots decreased to approximately 60% and the formation of lateral roots was stimulated under nCu exposure, possibly due to the enhancement of nitrogen uptake and accumulation of auxin in lateral roots. The expression of four of the genes involved in the positive regulation of cell proliferation and negative regulation of programmed cell death decreased to 50% in the Cu²⁺ treatment compared to that of the control, while only one gene was down-regulated to about half of the control in nCu treatment. This explained the decreased root cell proliferation and higher extent of induced cell death in Cu²⁺- than in nCu-exposed plants. The increased methane dicarboxylic aldehyde accumulation (2.17-fold increase compared with the control) and decreased antioxidant enzyme activities (more than 50% decrease compared with the control) observed in the Cu²⁺ treatment in relation to the nCu treatment indicated higher oxidative stress in Cu²⁺- than in nCu-exposed plants. Antioxidant (e.g., proline) synthesis was pronouncedly induced by nCu to scavenge excess reactive oxygen species, alleviating phytotoxicity to wheat exposed to this form of Cu. Overall, oxidative stress and root growth inhibition were the main causes of nCu toxicity.
Show more [+] Less [-]Triclosan affects axon formation in the neural development stages of zebrafish embryos (Danio rerio) Full text
2018
Kim, Jin | Oh, Hanseul | Ryu, Bokyeong | Kim, Ukjin | Lee, Ji-min | Jung, Cho-Rok | Kim, C-yoon | Park, Jae-Hak
Triclosan (TCS) is an organic compound with a wide range of antibiotic activity and has been widely used in items ranging from hygiene products to cosmetics; however, recent studies suggest that it has several adverse effects. In particular, TCS can be passed to both fetus and infants, and while some evidence suggests in vitro neurotoxicity, there are currently few studies concerning the mechanisms of TCS-induced developmental neurotoxicity. Therefore, this study aimed to clarify the effect of TCS on neural development using zebrafish models, by analyzing the morphological changes, the alterations observed in fluorescence using HuC-GFP and Olig2-dsRED transgenic zebrafish models, and neurodevelopmental gene expression. TCS exposure decreased the body length, head size, and eye size in a concentration-dependent manner in zebrafish embryos. It increased apoptosis in the central nervous system (CNS) and particularly affected the structure of the CNS, resulting in decreased synaptic density and shortened axon length. In addition, it significantly up-regulated the expression of genes related to axon extension and synapse formation such as α1-Tubulin and Gap43, while decreasing Gfap and Mbp related to axon guidance, myelination and maintenance. Collectively, these changes indicate that exposure to TCS during neurodevelopment, especially during axonogenesis, is toxic. This is the first study to demonstrate the toxicity of TCS during neurogenesis, and suggests a possible mechanism underlying the neurotoxic effects of TCS in developing vertebrates.
Show more [+] Less [-]Toxicity and mutagenicity of exhaust from compressed natural gas: Could this be a clean solution for megacities with mixed-traffic conditions? Full text
2018
Agarwal, Avinash K. | Ateeq, Bushra | Gupta, Tarun | Singh, Akhilendra P. | Pandey, Swaroop K. | Sharma, Nikhil | Agarwal, Rashmi A. | Gupta, Neeraj K. | Sharma, Hemant | Jain, Ayush | Shukla, Pravesh C.
Despite intensive research carried out on particulates, correlation between engine-out particulate emissions and adverse health effects is not well understood yet. Particulate emissions hold enormous significance for mega-cities like Delhi that have immense traffic diversity. Entire public transportation system involving taxis, three-wheelers, and buses has been switched from conventional liquid fuels to compressed natural gas (CNG) in the Mega-city of Delhi. In this study, the particulate characterization was carried out on variety of engines including three diesel engines complying with Euro-II, Euro-III and Euro-IV emission norms, one Euro-II gasoline engine and one Euro-IV CNG engine. Physical, chemical and biological characterizations of particulates were performed to assess the particulate toxicity. The mutagenic potential of particulate samples was investigated at different concentrations using two different Salmonella strains, TA98 and TA100 in presence and absence of liver S9 metabolic enzyme fraction. Particulates emitted from diesel and gasoline engines showed higher mutagenicity, while those from CNG engine showed negligible mutagenicity compared to other test fuels and engine configurations. Polycyclic aromatic hydrocarbons (PAHs) adsorbed onto CNG engine particulates were also relatively fewer compared to those from equivalent diesel and gasoline engines. Taken together, our findings indicate that CNG is comparatively safer fuel compared to diesel and gasoline and can offer a cleaner transport energy solution for mega-cities with mixed-traffic conditions, especially in developing countries.
Show more [+] Less [-]Vertical variation of PM2.5 mass and chemical composition, particle size distribution, NO2, and BTEX at a high rise building Full text
2018
Zauli Sajani, Stefano | Marchesi, Stefano | Trentini, Arianna | Bacco, Dimitri | Zigola, Claudia | Rovelli, Sabrina | Ricciardelli, Isabella | Maccone, Claudio | Lauriola, Paolo | Cavallo, Domenico Maria | Poluzzi, Vanes | Cattaneo, Andrea | Harrison, Roy M.
Substantial efforts have been made in recent years to investigate the horizontal variability of air pollutants at regional and urban scales and epidemiological studies have taken advantage of resulting improvements in exposure assessment. On the contrary, only a few studies have investigated the vertical variability and their results are not consistent. In this study, a field experiment has been conducted to evaluate the variation of concentrations of different particle metrics and gaseous pollutants on the basis of floor height at a high rise building. Two 15-day monitoring campaigns were conducted in the urban area of Bologna, Northern Italy, one of the most polluted areas in Europe. Measurements sites were operated simultaneously at 2, 15, 26, 44 and 65 m a.g.l. Several particulate matter metrics including PM₂.₅ mass and chemical composition, particle number concentration and size distribution were measured. Time integrated measurement of NO₂ and BTEX were also included in the monitoring campaigns. Measurements showed relevant vertical gradients for most traffic related pollutants. A monotonic gradient of PM₂.₅ was found with ground-to-top differences of 4% during the warm period and 11% during the cold period. Larger gradients were found for UFP (∼30% during both seasons) with a substantial loss of particles from ground to top in the sub-50 nm size range. The largest drops in concentrations for chemical components were found for Elemental Carbon (−27%), iron (−11%) and tin (−36%) during winter. The ground-to-top decline of concentrations for NO₂ and benzene during winter was equal to 74% and 35%, respectively. In conclusion, our findings emphasize the need to include vertical variations of urban air pollutants when evaluating population exposure and associated health effects, especially in relation to some traffic related pollutants and particle metrics.
Show more [+] Less [-]How microplastics quantities increase with flood events? An example from Mersin Bay NE Levantine coast of Turkey Full text
2018
Gündoğdu, Sedat | Çevik, Cem | Ayat, Berna | Aydoğan, Burak | Karaca, Serkan
Floods caused by heavy rain carry significant amounts of pollutants into marine environments. This study evaluates the effect of multiple floods that occurred in the northeastern Mediterranean region in Turkey between December 2016 and January 2017 on the microplastic pollution in the Mersin Bay. Sampling was repeated in four different stations both before and after the flood period, and it was determined that in the four stations, there was an average of 539,189 MPs/km² before the flood, and 7,699,716 MPs/km² afterwards, representing a 14-fold increase. Fourteen different polymer types were detected in an ATR FT-IR analysis, eight of which were not found in samples collected before the floods. The most common polymer type was identified as polyethylene both pre- and post-flood. The mean particle size, which was 2.37 mm in the pre-flood period, decreased to 1.13 mm in the post-flood period. A hydrodynamic modeling study was implemented to hindcast the current structure and the spatial and temporal distributions of microplastics within the study area. In conclusion, heavy rain and severe floods can dramatically increase the microplastic levels in the sea.
Show more [+] Less [-]Nitrate reduced arsenic redox transformation and transfer in flooded paddy soil-rice system Full text
2018
Lin, Zhaojun | Wang, Xin | Wu, Xin | Liu, Daihuan | Yin, Yulong | Zhang, Yue | Sha, Jincheng | Xing, Baoshan
Inhibition of reductive transformation of arsenic (As) in flooded paddy soils is of fundamental importance for mitigating As transfer into food chain. Anaerobic arsenite (As(III)) oxidizers maintain As in less mobile fraction under nitrate-reducing conditions. In this study, we explored the dynamic profile of As speciation in porewater and As distribution among the pools of differential bioavailability in soil solid phase with and without nitrate treatment. In parallel, the abundance and diversity of As(III) oxidase gene (aioA) in flooded paddy soil with nitrate amendment was examined by quantitative PCR and aioA gene clone library. Furthermore, the impact of nitrate on As accumulation and speciation in rice seedlings was unraveled. With nitrate addition (25 mmol NO₃⁻ kg⁻¹ soil), porewater As(III) was maintained at a consistently negligible concentration in the flooded paddy soil and the reductive dissolution of As-bearing Fe oxides/hydroxides was significantly restrained. Specifically, nitrate amendment kept 81% of total soil As in the nonlabile fraction with arsenate (As(V)) dominating after 30 days of flooding, compared to only 61% in the unamended control. Nitrate treatment induced 4-fold higher abundance of aioA gene, which belonged to domains of bacteria and archaea under the classes α-Proteobacteria (6%), ß-Proteobacteria (90%), ɣ-Proteobacteria (2%), and Thermoprotei (2%). By nitrate addition, As accumulation in rice seedlings was decreased by 85% with simultaneously elevated As(V) ratio in rice plant relative to control after 22 days of growth under flooded conditions. These results highlight that nitrate application can serve an efficient method to inhibit reductive dissolution of As in flooded paddy soils, and hence diminish As uptake by rice under anaerobic growing conditions.
Show more [+] Less [-]The combined toxicity effect of nanoplastics and glyphosate on Microcystis aeruginosa growth Full text
2018
Zhang, Qi | Qu, Qian | Lu, Tao | Ke, Mingjing | Zhu, Youchao | Zhang, Meng | Zhang, Zhenyan | Du, Benben | Pan, Xiangliang | Sun, Liwei | Qian, Haifeng
Waste plastics can be degraded to nanoplastics (NPs, diameter<1 μm) by natural forces. NPs not only directly affect aquatic organisms but also adsorb other pollutants, causing combined pollution. Glyphosate is one of the most widely used herbicides and is commonly monitored in freshwater systems. In this study, the effects of the combined toxicity of polystyrene cationic amino-modified nanoparticles (nPS-NH₂) and glyphosate on a blue-green alga, Microcystis aeruginosa, were investigated. Our results demonstrated that 5 mg/L glyphosate had a strong inhibitory effect on M. aeruginosa (the 96-h inhibitory rate was 27%), while 5 mg/L nPS-NH₂ had no apparent effect on the growth of M. aeruginosa. Interestingly, nPS-NH₂ combined with glyphosate showed antagonistic effects on the inhibition of algal growth because nPS-NH₂ displayed a strong adsorption capacity for glyphosate, which significantly alleviated the inhibitory effect of glyphosate on M. aeruginosa growth. However, the presence of glyphosate enhanced the stability of the dispersion system, which allowed more nPS-NH₂ to adsorb on the surface of M. aeruginosa and may result in greater enrichment of nPS-NH₂ in the food chain to show potential repercussions to human life. Our current study provides a new theoretical basis for the combined effects of NPs and pesticide pollution.
Show more [+] Less [-]Spatial glyphosate and AMPA redistribution on the soil surface driven by sediment transport processes – A flume experiment Full text
2018
Bento, Célia P.M. | Commelin, Meindert C. | Baartman, Jantiene E.M. | Yang, Xiaomei | Peters, Piet | Mol, Hans G.J. | Ritsema, Coen J. | Geissen, Violette
This study investigates the influence of small-scale sediment transport on glyphosate and AMPA redistribution on the soil surface and on their off-site transport during water erosion events. Both a smooth surface (T1) and a surface with “seeding lines on the contour” (T2) were tested in a rainfall simulation experiment using soil flumes (1 × 0.5 m) with a 5% slope. A dose of 178 mg m⁻² of a glyphosate-based formulation (CLINIC®) was applied on the upper 0.2 m of the flumes. Four 15-min rainfall events (RE) with 30-min interval in between and a total rainfall intensity of 30 mm h⁻¹ were applied. Runoff samples were collected after each RE in a collector at the flume outlet. At the end of the four REs, soil and sediment samples were collected in the application area and in four 20 cm-segments downslope of the application area. Samples were collected according to the following visually distinguished soil surface groups: light sedimentation (LS), dark sedimentation (DS), background and aggregates.Results showed that runoff, suspended sediment and associated glyphosate and AMPA off-site transport were significantly lower in T2 than in T1. Glyphosate and AMPA off-site deposition was higher for T2 than for T1, and their contents on the soil surface decreased with increasing distance from the application area for all soil surface groups and in both treatments. The LS and DS groups presented the highest glyphosate and AMPA contents, but the background group contributed the most to the downslope off-site deposition.Glyphosate and AMPA off-target particle-bound transport was 9.4% (T1) and 17.8% (T2) of the applied amount, while water-dissolved transport was 2.8% (T1) and 0.5% (T2). Particle size and organic matter influenced the mobility of glyphosate and AMPA to off-target areas. These results indicate that the pollution risk of terrestrial and aquatic environments through runoff and deposition can be considerable.
Show more [+] Less [-]