Refine search
Results 191-200 of 8,011
Foraging depth depicts resource partitioning and contamination level in a pelagic shark assemblage: insights from mercury stable isotopes Full text
2021
Besnard, Lucien | Le Croizier, Gaël | Galván-magaña, Felipe | Point, David | Kraffe, Edouard | Ketchum, James | Martinez Rincon, Raul Octavio | Schaal, Gauthier
Foraging depth depicts resource partitioning and contamination level in a pelagic shark assemblage: insights from mercury stable isotopes Full text
2021
Besnard, Lucien | Le Croizier, Gaël | Galván-magaña, Felipe | Point, David | Kraffe, Edouard | Ketchum, James | Martinez Rincon, Raul Octavio | Schaal, Gauthier
The decline of shark populations in the world ocean is affecting ecosystem structure and function in an unpredictable way and new ecological information is today needed to better understand shark roles in their habitats. In particular, the characterization of foraging patterns is crucial to understand and foresee the evolution of dynamics between sharks and their prey. Many shark species use the mesopelagic area as a major foraging ground but the degree to which different pelagic sharks rely on this habitat remains overlooked. In order to depict the vertical dimension of their trophic ecology, we used mercury stable isotopes in the muscle of three pelagic shark species (the blue shark Prionace glauca, the shortfin mako shark Isurus oxyrinchus and the smooth hammerhead shark Sphyrna zygaena) from the northeastern Pacific region. The Δ199Hg values, ranging from 1.40 to 2.13 ‰ in sharks, suggested a diet mostly based on mesopelagic prey in oceanic habitats. We additionally used carbon and nitrogen stable isotopes (δ13C, δ15N) alone or in combination with Δ199Hg values, to assess resource partitioning between the three shark species. Combining Δ199Hg resulted in a decrease in trophic overlap estimates compared to δ13C/δ15N alone, demonstrating that multi-isotope modeling is needed for accurate trophic description of the three species. Mainly, it reveals that they forage at different average depths and that resource partitioning is mostly expressed through the vertical dimension within pelagic shark assemblages. Concomitantly, muscle total mercury concentration (THg) differed between species and increased with feeding depth. Overall, this study highlights the key role of the mesopelagic zone for shark species foraging among important depth gradients and reports new ecological information on trophic competition using mercury isotopes. It also suggests that foraging depth may play a pivotal role in the differences between muscle THg from co-occurring high trophic level shark species.
Show more [+] Less [-]Foraging depth depicts resource partitioning and contamination level in a pelagic shark assemblage: Insights from mercury stable isotopes Full text
2021
Besnard, Lucien | Le Croizier, Gaël | Galván-Magaña, Felipe | Point, David | Kraffe, Edouard | Ketchum, James | Martinez Rincon, Raul Octavio | Schaal, Gauthier
The decline of shark populations in the world ocean is affecting ecosystem structure and function in an unpredictable way and new ecological information is today needed to better understand the role of sharks in their habitats. In particular, the characterization of foraging patterns is crucial to understand and foresee the evolution of dynamics between sharks and their prey. Many shark species use the mesopelagic area as a major foraging ground but the degree to which different pelagic sharks rely on this habitat remains overlooked. In order to depict the vertical dimension of their trophic ecology, we used mercury stable isotopes in the muscle of three pelagic shark species (the blue shark Prionace glauca, the shortfin mako shark Isurus oxyrinchus and the smooth hammerhead shark Sphyrna zygaena) from the northeastern Pacific region. The Δ¹⁹⁹Hg values, ranging from 1.40 to 2.13‰ in sharks, suggested a diet mostly based on mesopelagic prey in oceanic habitats. We additionally used carbon and nitrogen stable isotopes (δ¹³C, δ¹⁵N) alone or in combination with Δ¹⁹⁹Hg values, to assess resource partitioning between the three shark species. Adding Δ¹⁹⁹Hg resulted in a decrease in trophic overlap estimates compared to those based on δ¹³C/δ¹⁵N alone, demonstrating that multi-isotope modeling is needed for accurate trophic description of the three species. Mainly, it reveals that they forage at different average depths and that resource partitioning is mostly expressed through the vertical dimension within pelagic shark assemblages. Concomitantly, muscle total mercury concentration (THg) differed between species and increased with feeding depth. Overall, this study highlights the key role of the mesopelagic zone for shark species foraging among important depth gradients and reports new ecological information on trophic competition using mercury isotopes. It also suggests that foraging depth may play a pivotal role in the differences between muscle THg from co-occurring high trophic level shark species.
Show more [+] Less [-]Transient effect of bisphenol A (BPA) and di-(2-ethylhexyl) phthalate (DEHP) on the cosmopolitan marine diatom Chaetoceros decipiens-lorenzianus Full text
2021
M’rabet, Charaf | Kéfi–daly Yahia, Ons | Chomerat, Nicolas | Zentz, Frederic | Bilien, Gwenael | Pringault, Olivier
Transient effect of bisphenol A (BPA) and di-(2-ethylhexyl) phthalate (DEHP) on the cosmopolitan marine diatom Chaetoceros decipiens-lorenzianus Full text
2021
M’rabet, Charaf | Kéfi–daly Yahia, Ons | Chomerat, Nicolas | Zentz, Frederic | Bilien, Gwenael | Pringault, Olivier
Incubation under controlled laboratory conditions were performed to assess the toxic effects of two plastic derived chemicals, bisphenol A (BPA) and di-(2-ethylhexyl) phthalate (DEHP), on the growth, photosynthetic efficiency and photosynthetic activity of the cosmopolitan diatom Chaetoceros decipiens-lorenzianus. Non-axenic diatom cells were exposed to concentrations of BPA and DEHP (separately and in mixture), mimicking concentrations observed in contaminated marine ecosystems, for seven days. Upon short-term exposure (i.e., during the first 48 h), BPA and DEHP induced a slight but significant stimulation of biomass and photosynthetic activity relative to the control, whereas, no significant impact was observed on the photosynthetic efficiency. Nevertheless, this pattern was transient. The stimulation was followed by a return to control conditions for all treatments at the end of incubation. These results showed that the cosmopolitan diatom Chaetoceros was not impacted by representative in situ concentrations of plastic derivatives, thus confirming its ability to thrive in coastal anthropogenic environments.
Show more [+] Less [-]Transient effect of bisphenol A (BPA) and di-(2-ethylhexyl) phthalate (DEHP) on the cosmopolitan marine diatom Chaetoceros decipiens-lorenzianus Full text
2021
M'Rabet, Charaf | Kéfi–Daly Yahia, Ons | Chomérat, Nicolas | Zentz, Frédéric | Bilien, Gwenaël | Pringault, Olivier
Incubation under controlled laboratory conditions were performed to assess the toxic effects of two plastic derived chemicals, bisphenol A (BPA) and di-(2-ethylhexyl) phthalate (DEHP), on the growth, photosynthetic efficiency and photosynthetic activity of the cosmopolitan diatom Chaetoceros decipiens-lorenzianus. Non-axenic diatom cells were exposed to concentrations of BPA and DEHP (separately and in mixture), mimicking concentrations observed in contaminated marine ecosystems, for seven days. Upon short-term exposure (i.e., during the first 48 h), BPA and DEHP induced a slight but significant stimulation of biomass and photosynthetic activity relative to the control, whereas, no significant impact was observed on the photosynthetic efficiency. Nevertheless, this pattern was transient. The stimulation was followed by a return to control conditions for all treatments at the end of incubation. These results showed that the cosmopolitan diatom Chaetoceros was not impacted by representative in situ concentrations of plastic derivatives, thus confirming its ability to thrive in coastal anthropogenic environments.
Show more [+] Less [-]Metal stable isotopes in transplanted oysters as a new tool for monitoring anthropogenic metal bioaccumulation in marine environments: The case for copper Full text
2021
Ferreira Araujo, Daniel | Knoery, Joel | Briant, Nicolas | Ponzevera, Emmanuel | Chouvelon, Tiphaine | Auby, Isabelle | Yepez, Santiago | Bruzac, Sandrine | Sireau, Teddy | Pellouin-grouhel, Anne | Akcha, Farida
Metal stable isotopes in transplanted oysters as a new tool for monitoring anthropogenic metal bioaccumulation in marine environments: The case for copper Full text
2021
Ferreira Araujo, Daniel | Knoery, Joel | Briant, Nicolas | Ponzevera, Emmanuel | Chouvelon, Tiphaine | Auby, Isabelle | Yepez, Santiago | Bruzac, Sandrine | Sireau, Teddy | Pellouin-grouhel, Anne | Akcha, Farida
Metal release into the environment from anthropogenic activities may endanger ecosystems and human health. However, identifying and quantifying anthropogenic metal bioaccumulation in organisms remain a challenging task. In this work, we assess Cu isotopes in Pacific oysters (C. gigas) as a new tool for monitoring anthropogenic Cu bioaccumulation into marine environments. Arcachon Bay was taken as a natural laboratory due to its increasing contamination by Cu, and its relevance as a prominent shellfish production area. Here, we transplanted 18-month old oysters reared in an oceanic neighbor area into two Arcachon Bay mariculture sites under different exposure levels to continental Cu inputs. At the end of their 12-month long transplantation period, the oysters’ Cu body burdens had increased, and was shifted toward more positive δ65Cu values. The gradient of Cu isotope compositions observed for oysters sampling stations was consistent with relative geographic distance and exposure intensities to unknown continental Cu sources. A binary isotope mixing model based on experimental data allowed to estimate the Cu continental fraction bioaccumulated in the transplanted oysters. The positive δ65Cu values and high bioaccumulated levels of Cu in transplanted oysters support that continental emissions are dominantly anthropogenic. However, identifying specific pollutant coastal source remained unelucidated mostly due to their broader and overlapping isotope signatures and potential post-depositional Cu isotope fractionation processes. Further investigations on isotope fractionation of Cu-based compounds in an aqueous medium may improve Cu source discrimination. Thus, using Cu as an example, this work combines for the first time a well-known caged bivalve approach with metal stable isotope techniques for monitoring and quantifying the bioaccumulation of anthropogenic metal into marine environments. Also, it states the main challenges to pinpoint specific coastal anthropogenic sources utilizing this approach and provides the perspectives for further studies to overcome them.
Show more [+] Less [-]Metal stable isotopes in transplanted oysters as a new tool for monitoring anthropogenic metal bioaccumulation in marine environments: The case for copper Full text
2021
Araújo, Daniel F. | Knoery, Joël | Briant, Nicolas | Ponzevera, Emmanuel | Chouvelon, Tiphaine | Auby, Isabelle | Yepez, Santiago | Bruzac, Sandrine | Sireau, Teddy | Pellouin-Grouhel, Anne | Akcha, Farida
Metal release into the environment from anthropogenic activities may endanger ecosystems and human health. However, identifying and quantifying anthropogenic metal bioaccumulation in organisms remain a challenging task. In this work, we assess Cu isotopes in Pacific oysters (C. gigas) as a new tool for monitoring anthropogenic Cu bioaccumulation into marine environments. Arcachon Bay was taken as a natural laboratory due to its increasing contamination by Cu, and its relevance as a prominent shellfish production area. Here, we transplanted 18-month old oysters reared in an oceanic neighbor area into two Arcachon Bay mariculture sites under different exposure levels to continental Cu inputs. At the end of their 12-month long transplantation period, the oysters’ Cu body burdens had increased, and was shifted toward more positive δ⁶⁵Cu values. The gradient of Cu isotope compositions observed for oysters sampling stations was consistent with relative geographic distance and exposure intensities to unknown continental Cu sources. A binary isotope mixing model based on experimental data allowed to estimate the Cu continental fraction bioaccumulated in the transplanted oysters. The positive δ⁶⁵Cu values and high bioaccumulated levels of Cu in transplanted oysters support that continental emissions are dominantly anthropogenic. However, identifying specific pollutant coastal source remained unelucidated mostly due to their broader and overlapping isotope signatures and potential post-depositional Cu isotope fractionation processes. Further investigations on isotope fractionation of Cu-based compounds in an aqueous medium may improve Cu source discrimination. Thus, using Cu as an example, this work combines for the first time a well-known caged bivalve approach with metal stable isotope techniques for monitoring and quantifying the bioaccumulation of anthropogenic metal into marine environments. Also, it states the main challenges to pinpoint specific coastal anthropogenic sources utilizing this approach and provides the perspectives for further studies to overcome them.
Show more [+] Less [-]Fate of floating plastic debris released along the coasts in a global ocean model Full text
2021
Chenillat, Fanny | Huck, Thierry | Maes, Christophe | Grima, Nicolas | Blanke, Bruno
Marine plastic pollution is a global issue, from the shores to the open ocean. Understanding the pathway and fate of plastic debris is fundamental to manage and reduce plastic pollution. Here, the fate of floating plastic pollution discharged along the coasts is studied by comparing two sources, one based on river discharges and the other on mismanaged waste from coastal populations, using a Lagrangian numerical analysis in a global ocean circulation model. About 1/3 of the particles end up in the open ocean and 2/3 on beaches. The input scenario largely influences the accumulation of particles toward the main subtropical convergence zones, with the South Pacific and North Atlantic being mostly fed by the coastal population inputs. The input scenario influences the number of beached particles that end up in several coastal areas. Beaching occurs mainly locally, although a significant number of particles travel long distances, allowing for global connectivity.
Show more [+] Less [-]Pelagic stocks and carbon and nitrogen uptake in a pearl farming atoll (Ahe, French Polynesia) Full text
2021
Rodier, Martine | Pinazo, Christel | Seceh, Claire | Varillon, David
This study reports the first measurements of nitrogen uptake and new data on carbon fixation (15N/13C incorporation) for two size-fractionated phytoplankton (<2 μm and >2 μm), on organic matter, and phytoplankton stocks in Ahe lagoon. Data were collected between November and December 2017, during the hot season with prevailing trade winds. Ammonium and nitrate uptake data (7.58 to 39.81 and 1.80 to 21.43 μmol N m−3 h−1, respectively) suggest a rapid turn-over of N-nutrients in the water column and show that primary production was largely sustained by recycled nitrogen providing 68% of the pelagic N demand. These results highlight the spatial heterogeneity of the measured processes linked to the local hydrodynamics, exhibiting higher regenerated production in the more exploited southwestern part of the lagoon and a higher proportion of new production in the north. Intense nutrient recycling appears to promote nanophytoplankton production which is critical for pearl oyster growth.
Show more [+] Less [-]Seagrass ecosystems of the Pacific Island Countries and Territories: A global bright spot Full text
2021
Mckenzie, Len J. | Yoshida, Rudi L. | Aini, John W. | Andréfouet, Serge | Colin, Patrick L. | Cullen-unsworth, Leanne C. | Hughes, Alec T. | Payri, Claude E. | Rota, Manibua | Shaw, Christina | Skelton, Posa A. | Tsuda, Roy T. | Vuki, Veikila C. | Unsworth, Richard K.f.
Seagrass ecosystems of the Pacific Island Countries and Territories: A global bright spot Full text
2021
Mckenzie, Len J. | Yoshida, Rudi L. | Aini, John W. | Andréfouet, Serge | Colin, Patrick L. | Cullen-unsworth, Leanne C. | Hughes, Alec T. | Payri, Claude E. | Rota, Manibua | Shaw, Christina | Skelton, Posa A. | Tsuda, Roy T. | Vuki, Veikila C. | Unsworth, Richard K.f.
Seagrass ecosystems exist throughout Pacific Island Countries and Territories (PICTs). Despite this area covering nearly 8% of the global ocean, information on seagrass distribution, biogeography, and status remains largely absent from the scientific literature. We confirm 16 seagrass species occur across 17 of the 22 PICTs with the highest number in Melanesia, followed by Micronesia and Polynesia respectively. The greatest diversity of seagrass occurs in Papua New Guinea (13 species), and attenuates eastward across the Pacific to two species in French Polynesia. We conservatively estimate seagrass extent to be 1446.2 km2, with the greatest extent (84%) in Melanesia. We find seagrass condition in 65% of PICTs increasing or displaying no discernible trend since records began. Marine conservation across the region overwhelmingly focuses on coral reefs, with seagrass ecosystems marginalised in conservation legislation and policy. Traditional knowledge is playing a greater role in managing local seagrass resources and these approaches are having greater success than contemporary conservation approaches. In a world where the future of seagrass ecosystems is looking progressively dire, the Pacific Islands appears as a global bright spot, where pressures remain relatively low and seagrass more resilient.
Show more [+] Less [-]Seagrass ecosystems of the Pacific Island Countries and Territories: A global bright spot Full text
2021
McKenzie, Len J. | Yoshida, Rudi L. | Aini, John W. | Andréfouet, Serge | Colin, Patrick L. | Cullen-Unsworth, Leanne C. | Hughes, Alec T. | Payri, Claude E. | Rota, Manibua | Shaw, Christina | Skelton, Posa A. | Tsuda, Roy T. | Vuki, Veikila C. | Unsworth, Richard K.F.
Seagrass ecosystems exist throughout Pacific Island Countries and Territories (PICTs). Despite this area covering nearly 8% of the global ocean, information on seagrass distribution, biogeography, and status remains largely absent from the scientific literature. We confirm 16 seagrass species occur across 17 of the 22 PICTs with the highest number in Melanesia, followed by Micronesia and Polynesia respectively. The greatest diversity of seagrass occurs in Papua New Guinea (13 species), and attenuates eastward across the Pacific to two species in French Polynesia. We conservatively estimate seagrass extent to be 1446.2 km², with the greatest extent (84%) in Melanesia. We find seagrass condition in 65% of PICTs increasing or displaying no discernible trend since records began. Marine conservation across the region overwhelmingly focuses on coral reefs, with seagrass ecosystems marginalised in conservation legislation and policy. Traditional knowledge is playing a greater role in managing local seagrass resources and these approaches are having greater success than contemporary conservation approaches. In a world where the future of seagrass ecosystems is looking progressively dire, the Pacific Islands appears as a global bright spot, where pressures remain relatively low and seagrass more resilient.
Show more [+] Less [-]Seagrass ecosystem contributions to people's quality of life in the Pacific Island Countries and Territories Full text
2021
Mckenzie, Len J. | Yoshida, Rudi L. | Aini, John W. | Andréfouet, Serge | Colin, Patrick L. | Cullen-unsworth, Leanne C. | Hughes, Alec T. | Payri, Claude E. | Rota, Manibua | Shaw, Christina | Tsuda, Roy T. | Vuki, Veikila C. | Unsworth, Richard K.f.
Seagrass ecosystem contributions to people's quality of life in the Pacific Island Countries and Territories Full text
2021
Mckenzie, Len J. | Yoshida, Rudi L. | Aini, John W. | Andréfouet, Serge | Colin, Patrick L. | Cullen-unsworth, Leanne C. | Hughes, Alec T. | Payri, Claude E. | Rota, Manibua | Shaw, Christina | Tsuda, Roy T. | Vuki, Veikila C. | Unsworth, Richard K.f.
Seagrass ecosystems provide critical contributions (goods and perceived benefits or detriments) for the livelihoods and wellbeing of Pacific Islander peoples. Through in-depth examination of the contributions provided by seagrass ecosystems across the Pacific Island Countries and Territories (PICTs), we find a greater quantity in the Near Oceania (New Guinea, the Bismarck Archipelago and the Solomon Islands) and western Micronesian (Palau and Northern Marianas) regions; indicating a stronger coupling between human society and seagrass ecosystems. We also find many non-material contributions historically have been overlooked and under-appreciated by decision-makers. Closer cultural connections likely motivate guardianship of seagrass ecosystems by Pacific communities to mitigate local anthropogenic pressures. Regional comparisons also shed light on general and specific aspects of the importance of seagrass ecosystems to Pacific Islanders, which are critical for forming evidence-based policy and management to ensure the long-term resilience of seagrass ecosystems and the contributions they provide.
Show more [+] Less [-]Seagrass ecosystem contributions to people's quality of life in the Pacific Island Countries and Territories Full text
2021
McKenzie, Len J. | Yoshida, Rudi L. | Aini, John W. | Andréfouet, Serge | Colin, Patrick L. | Cullen-Unsworth, Leanne C. | Hughes, Alec T. | Payri, Claude E. | Rota, Manibua | Shaw, Christina | Tsuda, Roy T. | Vuki, Veikila C. | Unsworth, Richard K.F.
Seagrass ecosystems provide critical contributions (goods and perceived benefits or detriments) for the livelihoods and wellbeing of Pacific Islander peoples. Through in-depth examination of the contributions provided by seagrass ecosystems across the Pacific Island Countries and Territories (PICTs), we find a greater quantity in the Near Oceania (New Guinea, the Bismarck Archipelago and the Solomon Islands) and western Micronesian (Palau and Northern Marianas) regions; indicating a stronger coupling between human society and seagrass ecosystems. We also find many non-material contributions historically have been overlooked and under-appreciated by decision-makers. Closer cultural connections likely motivate guardianship of seagrass ecosystems by Pacific communities to mitigate local anthropogenic pressures. Regional comparisons also shed light on general and specific aspects of the importance of seagrass ecosystems to Pacific Islanders, which are critical for forming evidence-based policy and management to ensure the long-term resilience of seagrass ecosystems and the contributions they provide.
Show more [+] Less [-]Coupling high frequency monitoring and bioassay experiments to investigate a harmful algal bloom in the Bay of Seine (French-English Channel) Full text
2021
Serre-fredj, Léon | Jacqueline, Franck | Navon, Maxime | Izabel, Guillaume | Chasselin, Leo | Jolly, Orianne | Repecaud, Michel | Claquin, Pascal
Coastal ecosystems are increasingly threatened by eutrophication and dystrophy. In this context, the full pattern of a bloom dominated by the dinoflagellate, Lepidodinium chlorophorum, was investigated by a high frequency monitoring buoy equipped with sensors allowing nutrients and photosynthesis measurements. An increase of the N/P ratio affected phytoplankton physiology leading to bloom collapse with a slight oxygen depletion. In parallel, enrichment experiments were performed on the natural bloom population. After 5 days of incubation the community structure, using flow cytometry and several physiological parameters were analysed. The data reveal a potential N and P co-limitation and a decoupling between primary production and productivity in fully enriched conditions. Under unbalanced N/P inputs, high level of alkaline phosphatase activity and transparent exopolymeric particle production, which favour phytoplankton sedimentation, were observed. Nutrient inputs and their stoichiometry control phytoplankton growth, the community structure, physiological regulations, the fate of the bloom and consequences.
Show more [+] Less [-]Urban inputs of fecal bacteria to the coastal zone of Libreville, Gabon, Central Western Africa Full text
2021
Leboulanger, Christophe | Kolanou Biluka, Lévie | Nzigou, Aime Roger | Djuidje Kenmogne, Véronique | Happi, Johann Ludovic Martial | Ngohang, Franck Estimé | Eleng, Aminata Spanian | Ondo Zue Abaga, Norbert | Bouvy, Marc
Urban inputs of fecal bacteria to the coastal zone of Libreville, Gabon, Central Western Africa Full text
2021
Leboulanger, Christophe | Kolanou Biluka, Lévie | Nzigou, Aime Roger | Djuidje Kenmogne, Véronique | Happi, Johann Ludovic Martial | Ngohang, Franck Estimé | Eleng, Aminata Spanian | Ondo Zue Abaga, Norbert | Bouvy, Marc
Libreville, the largest city in Gabon, adversely impacts the Komo Estuary and the Akanda National Park aquatic ecosystems through discharge of domestic and industrial waste. Fecal Indicator Bacteria (FIB: Escherichia coli and fecal streptococci) were enumerated using culture-based methods in water from 40 sites between 2017 and 2019 including coastal outlets, mangrove channels, open bays and littoral rivers. Contamination levels were high in discharge waters from small urban rivers in Libreville agglomeration, frequently exceeding international safety guidelines, whereas FIB concentrations decreased downstream from the city in main mangrove channels. Littoral forest rivers were significantly impacted by fecal contamination despite the absence of settlements in the watersheds. Protected areas are not effective in avoiding FIB contamination, indicating inefficient waste management. Dedicated management policies should be implemented to reduce both the sanitary concern and global pollution, poorly assessed in a context of demographic increase in tropical littoral zones.
Show more [+] Less [-]Urban inputs of fecal bacteria to the coastal zone of Libreville, Gabon, Central Western Africa Full text
2021
Leboulanger, Christophe | Kolanou Biluka, Lévie | Nzigou, Aimé-Roger | Djuidje Kenmogne, Véronique | Happi, Johann Ludovic Martial | Ngohang, Franck Estimé | Eleng, Aminata Spanian | Ondo Zue Abaga, Norbert | Bouvy, Marc
Libreville, the largest city in Gabon, adversely impacts the Komo Estuary and the Akanda National Park aquatic ecosystems through discharge of domestic and industrial waste. Fecal Indicator Bacteria (FIB: Escherichia coli and fecal streptococci) were enumerated using culture-based methods in water from 40 sites between 2017 and 2019 including coastal outlets, mangrove channels, open bays and littoral rivers. Contamination levels were high in discharge waters from small urban rivers in Libreville agglomeration, frequently exceeding international safety guidelines, whereas FIB concentrations decreased downstream from the city in main mangrove channels. Littoral forest rivers were significantly impacted by fecal contamination despite the absence of settlements in the watersheds. Protected areas are not effective in avoiding FIB contamination, indicating inefficient waste management. Dedicated management policies should be implemented to reduce both the sanitary concern and global pollution, poorly assessed in a context of demographic increase in tropical littoral zones.
Show more [+] Less [-]Biogeochemical model of nitrogen cycling in Ahe (French Polynesia), a South Pacific coral atoll with pearl farming Full text
2021
Seceh, C. | Pinazo, C. | Rodier, Martine | Lajaunie-salla, K. | Mazoyer, C. | Grenz, C. | Le Gendre, Romain
A biogeochemical model (ECO3M-Atoll) was configured to simulate the lower food web in Ahe Atoll lagoon where phytoplankton is mostly nitrogen limited. Understanding the dynamics of phytoplankton – the main food source for oysters – is crucial for the management and the allocation of new pearl farming sites. After parametrizing the model with in situ observations, we tested different hypotheses about nitrogen cycling (benthic remineralization, atmospheric N fixation, etc.) and compared the results to a large observational dataset. Model results show that simulated (pico- and nano-) phytoplankton biomass and nitrogen concentrations are close to in situ data. The simulated biogeochemical processes (uptake and primary production) are also very similar to the observed values. In the model, primary production ranged from 1.00 to 2.00 mg C m−3 h−1 for pico- and 0.40 to 1.00 mg C m−3 h−1 for nanophytoplankton; mean N uptake was 2.02 μmol N m−3 h−1 for pico- and 1.25 μmol N m−3 h−1 for nanophytoplankton.
Show more [+] Less [-]