Refine search
Results 1901-1910 of 1,956
Solid-state fermentation: tool for bioremediation of adsorbed textile dyestuff on distillery industry waste-yeast biomass using isolated Bacillus cereus strain EBT1 Full text
2013
Kadam, Avinash A. | Kamatkar, Jeevan D. | Khandare, Rahul V. | Jadhav, Jyoti P. | Govindwar, Sanjay P.
Bioremediation of textile dyestuffs under solid-state fermentation (SSF) using industrial wastes as substrate pose an economically feasible, promising, and eco-friendly alternative. The purpose of this study was to adsorb Red M5B dye, a sample of dyes mixture and a real textile effluent on distillery industry waste-yeast biomass (DIW-YB) and its further bioremediation using Bacillus cereus EBT1 under SSF. Textile dyestuffs were allowed to adsorb on DIW-YB. DIW-YB adsorbed dyestuffs were decolorized under SSF by using B. cereus. Enzyme analysis was carried out to ensure decolorization of Red M5B. Metabolites after dye degradation were analyzed using UV–Vis spectroscopy, FTIR, HPLC, and GC-MS. DIW-YB showed adsorption of Red M5B, dyes mixture and a textile wastewater sample up to 87, 70, and 81 %, respectively. DIW-YB adsorbed Red M5B was decolorized up to 98 % by B. cereus in 36 h. Whereas B. cereus could effectively reduce American Dye Manufacture Institute value from DIW-YB adsorbed mixture of textile dyes and textile wastewater up to 70 and 100 %, respectively. Induction of extracellular enzymes such as laccase and azoreductase suggests their involvement in dye degradation. Repeated utilization of DIW-YB showed consistent adsorption and ADMI removal from textile wastewater up to seven cycles. HPLC and FTIR analysis confirms the biodegradation of Red M5B. GC-MS analysis revealed the formation of new metabolites. B. cereus has potential to bioremediate adsorbed textile dyestuffs on DIW-YB. B. cereus along with DIW-YB showed enhanced decolorization performance in tray bioreactor which suggests its potential for large-scale treatment procedures.
Show more [+] Less [-]Spatial distribution and source apportionment of water pollution in different administrative zones of Wen-Rui-Tang (WRT) river watershed, China Full text
2013
Yang, Liping | Mei, Kun | Liu, Xingmei | Wu, Laosheng | Zhang, Minghua | Xu, Jianming | Wang, Fan
Water quality degradation in river systems has caused great concerns all over the world. Identifying the spatial distribution and sources of water pollutants is the very first step for efficient water quality management. A set of water samples collected bimonthly at 12 monitoring sites in 2009 and 2010 were analyzed to determine the spatial distribution of critical parameters and to apportion the sources of pollutants in Wen-Rui-Tang (WRT) river watershed, near the East China Sea. The 12 monitoring sites were divided into three administrative zones of urban, suburban, and rural zones considering differences in land use and population density. Multivariate statistical methods [one-way analysis of variance, principal component analysis (PCA), and absolute principal component score—multiple linear regression (APCS-MLR) methods] were used to investigate the spatial distribution of water quality and to apportion the pollution sources. Results showed that most water quality parameters had no significant difference between the urban and suburban zones, whereas these two zones showed worse water quality than the rural zone. Based on PCA and APCS-MLR analysis, urban domestic sewage and commercial/service pollution, suburban domestic sewage along with fluorine point source pollution, and agricultural nonpoint source pollution with rural domestic sewage pollution were identified to the main pollution sources in urban, suburban, and rural zones, respectively. Understanding the water pollution characteristics of different administrative zones could put insights into effective water management policy-making especially in the area across various administrative zones.
Show more [+] Less [-]Hydrothermal synthesis of meso/macroporous BiVO₄ hierarchical particles and their photocatalytic degradation properties under visible light irradiation Full text
2013
Madhusudan, Puttaswamy | Kumar, Malahalli Vijaya | Ishigaki, Tadashi | Toda, Kenji | Uematsu, Kazuyoshi | Satō, Mineo
An ordered hierarchical meso/macroporous monoclinic bismuth vanadate (BiVO₄) particle was fabricated for the first time by a simple two-step melamine template hydrothermal method followed by calcination. The physiochemical parameters of as-prepared porous materials were characterized by means of X-ray diffraction, scanning electron microscopy, high-resolution transmission electron microscopy, Raman, Barrett–Emmett–Teller, and UV–vis techniques. The nitrogen adsorption–desorption measurement and pore size distribution curve suggest that meso/macropores exist in these hierarchical microarchitectures. Further, it is found that melamine plays a significant role in the formation of porous BiVO₄ particles, and when a known amount of melamine was added, the surface area and pore size of such porous BiVO₄ particles were increased. The photocatalytic activities of the as-prepared hierarchical BiVO₄ samples were measured for the photodegradation of Congo red aqueous dye solution under visible light irradiation. Surprisingly, the porous BiVO₄ particles showed outstanding photocatalytic activities than polycrystalline BiVO₄ sample. The possible enhancement of such catalytic performance has also been further discussed.
Show more [+] Less [-]Graphene—a promising material for removal of perchlorate (ClO₄ ⁻) from water Full text
2013
Lakshmi, Jothinathan | Vasudevan, Subramanyan
A batch adsorption process was applied to investigate the removal of perchlorate (ClO) from water by graphene. In doing so, the thermodynamic adsorption isotherm and kinetic studies were also carried out. Graphene was prepared by a facile liquid-phase exfoliation. Graphene was characterized by Raman spectroscopy, Fourier-transform infrared spectroscopy, powder X-ray diffraction, scanning electron microscope, and zeta potential measurements. A systematic study of the adsorption process was performed by varying pH, ionic strength, and temperature. The adsorption efficiency of graphene was 99.2 %, suggesting that graphene is an excellent adsorbent for ClO removal from water. The rate constants for all these kinetic models were calculated, and the results indicate that second-order kinetics model was well suitable to model the kinetic adsorption of ClO. Equilibrium data were well described by the typical Langmuir adsorption isotherm. The experimental results showed that graphene is an excellent perchlorate adsorbent with an adsorbent capacity of up to 0.024 mg/g at initial perchlorate concentration of 2 mg/L and temperature of 298 K. Thermodynamic studies revealed that the adsorption reaction was a spontaneous and endothermic process. Graphene removed the perchlorate present in the water and reduced it to a permissible level making it drinkable.
Show more [+] Less [-]Evaluation of the individuality of white rot macro fungus for the decolorization of synthetic dye Full text
2013
Pandey, Priyanka | Singh, Ram Praksh | Singh, Kailash Nath | Manisankar, Paramasivam
INTRODUCTION: A biosorbent was developed by simple dried Agaricus bisporus (SDAB) and effectively used for the biosorption of cationic dyes, Crystal Violet and Brilliant Green. MATERIALS AND METHODS: For the evaluation of the biosorbent system, all the batch equilibrium parameters like pH, biomass dose, contact time, and temperature were optimized to determine the decolorization efficiency of the biosorbent. The maximum yields of dye removal were achieved at pH 4.0 for Crystal Violet (CV) and pH 5.0 for Brilliant Green (BG), which are closer to their natural pH also. RESULT AND DISCUSSION: Equilibrium was established at 60 and 40 min for CV and BG, respectively. Pseudo first-order, pseudo second-order, and intraparticle-diffusion kinetic models were studied at different temperatures. Isotherm models such as Freundlich, Langmuir, and Dubinin–Radushkevich were also studied. Biosorption processes were successfully described by Langmuir isotherm model and the pseudo second-order kinetic model. CONCLUSIONS: The biosorption capacity of A. bisporus over CV and BG were found as 21.74 and 12.16 mg gm⁻¹. Thermodynamic parameters indicated that the CV and BG dye adsorption onto A. bisporus is spontaneous and exothermic in the single and ternary systems. Scanning electron microscopy, X-ray diffraction, and Fourier transform infrared spectroscopy were used for the surface morphology, crystalline structure of biosorbent, and dye–biosorbent interaction, respectively. This analysis of the biosorption data confirmed that these biosorption processes are ecofriendly and economical. Thus, this biomass system may be useful for the removal of contaminating cationic dyes.
Show more [+] Less [-]Ambient air quality and asthma cases in Niğde, Turkey Full text
2013
Kara, Ertan | Özdilek, Hasan Göksel | Kara, Emine Erman
Urban air quality is one of the key factors affecting human health. Turkey has transformed itself into an urban society over the last 30 years. At the same time, air pollution has become a serious impairment to health in many urban areas in the country. This is due to many reasons. In this study, a nonparametric evaluation was conducted of health effects that are triggered by urban air pollution. Niğde, the city which is the administrative centre of Nigde province was chosen of the effects of air pollution since, like many central Turkish cities, it is situated on a valley where atmospheric inversion occurs. In this paper, the relationship between ambient urban air quality, namely PM₁₀ and sulphur dioxide (SO₂), and human health, specifically asthma, during the winter season is examined. Air pollution data and asthma cases from 2006 to 2010 are covered in this study. The results of our study indicate that total asthma cases reported in Nigde between 2008 and 2010 were highly dependent on ambient SO₂ concentration. More asthma cases were recorded when 30 μg m⁻³ or higher SO₂ was present in the ambient air than those recorded under cleaner ambient air conditions. Moreover, it was determined that in Nigde in 2010, asthma cases reported in males aged between 45 and 64 were closely correlated with ambient SO₂ (α = 0.05).
Show more [+] Less [-]Evaluation of the optimum volatile organic compounds control strategy considering the formation of ozone and secondary organic aerosol in Seoul, Korea Full text
2013
Shin, H. J. | Kim, J. C. | Lee, Seunghun J. | Kim, Y. P.
The characteristics of volatile organic compounds (VOCs) and their annual trends in Seoul, Korea were investigated, with their optimal control strategy suggested. The annual concentration of VOCs (96.2–121.1 ppbC) has shown a decreasing trend from 2004 to 2008, suggesting the control strategy via the “Special Measures for Metropolitan Air Quality Improvement,” which was implemented in 2005, has been successful. The contributions of individual VOC to the production of ambient ozone and secondary organic aerosol (SOA) are discussed to assess the adequacy of current control strategies. The contribution of aromatics (C6–C10) to the production of ozone accounted for 38.7–46.3 % of the total ozone production, followed by low carbon alkanes (C2–C6) (27.0–35.9 %). The total SOA formation potential of VOCs was found to range from 2.5 to 3.5 μg m⁻³, mainly as a result of aromatics (C6–C10) (over 85 %). Considering the contributions from ozone and SOA production, it was concluded that solvent use was the most important emission source, followed by vehicle exhaust emissions. Thus, the current emission control strategy focused on these two emission sources is appropriate to reduce the VOCs related pollution level of the Seoul Metropolitan Region. Still, an additional control strategy, such as controlling the emissions from meat cooking, which is an emission source of high carbon alkanes (C7–C10), needs to be considered to further reduce the VOCs related pollution level in Seoul.
Show more [+] Less [-]Transformation of bisphenol A by manganese oxide-coated sand Full text
2013
Lin, Kunde | Peng, Yiwen | Huang, Xinwen | Ding, Jiafeng
Oxidative transformation of organic contaminants by manganese oxides was commonly investigated with pure MnO₂ suspension, which deviates from the fact that natural manganese oxides are seldom present as a pure form in the natural environment. In this study, we prepared manganese oxide-coated sand (MOCS) and evaluated its oxidative capacity using bisphenol A (BPA) as the model compound. BPA was transformed by MOCS and the reaction followed an exponential decay model. The reaction was pH dependent and followed the order of pH 4.5 > pH 5.5 > pH 6.5 > pH 7.5 > pH 8.6 > pH 9.6, indicating that acidic conditions facilitated BPA transformation while basic conditions disfavored the reaction. Coexisting metal ions exhibited inhibitory effects and followed the order of Fe³⁺ > Zn²⁺ > Cu²⁺ > Ca²⁺ > Mg²⁺ > Na⁺. Transformation of BPA by MOCS was much slower than that by pure MnO₂ suspension. However, similar transformation products were identified in both studies, suggesting the same reaction pathways. This work suggests that the reactivity of MnO₂ in the environment might be overestimated if extrapolating the result from the pure MnO₂ suspension because natural MnO₂ is mainly present as coating on the surface of soils and sediments.
Show more [+] Less [-]The impact of zero-valent iron nanoparticles upon soil microbial communities is context dependent Full text
2013
Pawlett, Mark | Ritz, K. (Karl) | Dorey, Robert A. | Rocks, Sophie | Ramsden, Jeremy | Harris, Jim A.
Nanosized zero-valent iron (nZVI) is an effective land remediation tool, but there remains little information regarding its impact upon and interactions with the soil microbial community. nZVI stabilised with sodium carboxymethyl cellulose was applied to soils of three contrasting textures and organic matter contents to determine impacts on soil microbial biomass, phenotypic (phospholipid fatty acid (PLFA)), and functional (multiple substrate-induced respiration (MSIR)) profiles. The nZVI significantly reduced microbial biomass by 29 % but only where soil was amended with 5 % straw. Effects of nZVI on MSIR profiles were only evident in the clay soils and were independent of organic matter content. PLFA profiling indicated that the soil microbial community structure in sandy soils were apparently the most, and clay soils the least, vulnerable to nZVI suggesting a protective effect imparted by clays. Evidence of nZVI bactericidal effects on Gram-negative bacteria and a potential reduction of arbuscular mycorrhizal fungi are presented. Data imply that the impact of nZVI on soil microbial communities is dependent on organic matter content and soil mineral type. Thereby, evaluations of nZVI toxicity on soil microbial communities should consider context. The reduction of AM fungi following nZVI application may have implications for land remediation.
Show more [+] Less [-]Effects of perchlorate on growth of four wetland plants and its accumulation in plant tissues Full text
2013
He, Hongzhi | Gao, Haishuo | Chen, Guikui | Li, Huashou | Lin, Hai | Shu, Zhenzhen
Perchlorate contamination in water is of concern because of uncertainties about toxicity and health effects, impact on ecosystems, and possible indirect exposure pathways to humans. Therefore, it is very important to investigate the ecotoxicology of perchlorate and to screen plant species for phytoremediation. Effects of perchlorate (20, 200, and 500 mg/L) on the growth of four wetland plants (Eichhornia crassipes, Acorus calamus L., Thalia dealbata, and Canna indica) as well as its accumulation in different plant tissues were investigated through water culture experiments. Twenty milligrams per liter of perchlorate had no significant effects on height, root length, aboveground part weight, root weight, and oxidizing power of roots of four plants, except A. calamus, and increasing concentrations of perchlorate showed that out of the four wetland plants, only A. calamus had a significant (p < 0.05) dose-dependent decrease in these parameters. When treated with 500 mg/L perchlorate, these parameters and chlorophyll content in the leaf of plants showed significant decline contrasted to control groups, except the root length of E. crassipes and C. indica. The order of inhibition rates of perchlorate on root length, aboveground part weight and root weight, and oxidizing power of roots was: A. calamus > C. indica > T. dealbata > E. crassipes and on chlorophyll content in the leaf it was: A. calamus > T. dealbata > C. indica > E. crassipes. The higher the concentration of perchlorate used, the higher the amount of perchlorate accumulation in plants. Perchlorate accumulation in aboveground tissues was much higher than that in underground tissues and leaf was the main tissue for perchlorate accumulation. The order of perchlorate accumulation content and the bioconcentration factor in leaf of four plants was: E. crassipes > C. indica > T. dealbata > A. calamus. Therefore, E. crassipes might be an ideal plant with high tolerance ability and accumulation ability for constructing wetland to remediate high levels of perchlorate polluted water.
Show more [+] Less [-]