Refine search
Results 1911-1920 of 7,995
Source contribution analysis of nutrient pollution in a P-rich watershed: Implications for integrated water quality management Full text
2021
Han, Jianxu | Xin, Zhuohang | Han, Feng | Xu, Bo | Wang, Longfan | Zhang, Chi | Zheng, Yi
It is still a great challenge to address nutrient pollution issues caused by various point sources and non-point sources on the watershed scale. Source contribution analysis based on watershed modeling can help watershed managers identify major pollution sources, propose effective management plans and make smart decisions. This study demonstrated a technical procedure for addressing watershed-scale water pollution problems in an agriculture-dominated watershed, using the Dengsha River Watershed (DRW) in Dalian, China as an example. The SWAT model was improved by considering the constraints of soil nutrient concentration, i.e., nitrogen (N) and phosphorus (P), when modeling the nutrient uptake by a typical crop, corn. Then the modified SWAT model was used to quantify the contributions of all known pollution sources to the N and P pollution in the DRW. The results showed that crop production and trans-administrative wastewater discharge were the two dominant sources of nutrient pollution. This study further examined the responses of nutrient loss and crop yield to different fertilizer application schemes. The results showed that N fertilizer was the limiting factor for crop yield and that excessive levels of P were stored in the agricultural soils of the DRW. An N fertilizer application rate of approximately 40% of the current rate was suggested to balance water quality and environmental protection with crop production. The long-term impact of legacy P was investigated with a 100-year future simulation that showed the crop growth could maintain for 12 years even after P fertilization ceased. Our study highlights the need to consider source attribution, fertilizer application and legacy P impacts in agriculture-dominated watersheds. The analysis framework used in this study can provide a scientifically sound procedure for formulating adaptive and sustainable nutrient management strategies in other study areas.
Show more [+] Less [-]Cadmium exposure disrupts the olfactory sensitivity of fire ants to semiochemicals Full text
2021
Yang, Fuxiang | Shao, Rui | Zhao, Jing | Li, Lei | Wang, Manqun | Zhou, Aiming
Ants are eusocial insects and have evolved sensitive chemosensory systems for social communication. However, the effect of heavy metal contamination on the olfactory sensitivity of ants remains largely unknown. Here, we investigated the survival and olfactory response of Solenopsis invicta under cadmium (Cd) exposure. As a result, exposure to dietary Cd at different concentrations (100, 300 and 500 mg/L) caused higher Cd accumulation and lower survival of the ants compared with the control (0 mg/L). Cd exposure induced diverse expression patterns of odor binding protein genes (SiOBPs) in S. invicta antenna. Specifically, the expression of SiOBP4, SiOBP11, SiOBP12 and SiOBP16 was increased by 1.84-, 1.14-, 0.83- and 1.76-fold, respectively, at 300 mg/L Cd, while SiOBP7 and SiOBP9 were suppressed as Cd concentration increased. Electroantennography (EAG) and behavioral bioassays were performed to further evaluate the effect of Cd contamination on the olfactory sensitivity of S. invicta workers to 2, 4, 6-trimethylpyridine (TMP) and 2-ethyl-3,6(5)-dimethylpyrazine (EDP), the two frequent functional semiochemicals for S. invicta. The results showed that under no Cd exposure, S. invicta workers exhibited strong EAG response and apparent residing repellence to TMP and EDP, but Cd exposure suppressed EAG response and deprived the behavioral repellence to TMP and EDP of the workers, suggesting that Cd exposure decreases the olfactory sensitivity of S. invicta to these two functional semiochemicals. Further fluorescence competitive binding assay revealed that SiOBP7 had strong binding affinity to TMP and EDP, suggesting that the decrease in olfactory sensitivity may be attributed to the inhibitory effect of Cd exposure on SiOBP7. Overall, our results suggest that Cd exposure may not only directly decrease the survival of ants, but also affect their olfactory recognition.
Show more [+] Less [-]Polycyclic aromatic hydrocarbons and nitro-polycyclic aromatic hydrocarbons in five East Asian cities: Seasonal characteristics, health risks, and yearly variations Full text
2021
Yang, Lu | Zhang, Lulu | Chen, Lijiang | Han, Chŏng | Akutagawa, Tomoko | Endo, Osamu | Yamauchi, Masahito | Neroda, Andrey | Toriba, Akira | Tang, Ning
Total suspended particulate matter and fine particulate matter were collected in five East Asian cities (Sapporo, Sagamihara, Kirishima, Shenyang, and Vladivostok) during warm and cold periods from 2017 to 2018. Nine polycyclic aromatic hydrocarbons (PAHs) and three nitro-polycyclic aromatic hydrocarbons (NPAHs) were detected by high-performance liquid chromatography with a fluorescence detector. The average concentrations of ∑PAHs and ∑NPAHs differed significantly both temporally and spatially and were the lowest in Kirishima during the warm period (∑PAHs: 0.11 ± 0.06 ng m⁻³; ∑NPAHs: 1.23 ± 0.96 pg m⁻³) and the highest in Shenyang during the cold period (∑PAHs: 49.7 ± 21.8 ng m⁻³; ∑NPAHs: 357 ± 180 pg m⁻³). The average total benzo[a]pyrene-equivalent concentrations were also higher in Shenyang and Vladivostok than in Japanese cities. According to the results of source apportionment, traffic emissions impacted these cities in both the warm and cold periods, whereas coal combustion-generated effects were obvious in Shenyang and Vladivostok during the cold period. Furthermore, PAHs and NPAHs originating from the Asian continent, including Shenyang and Vladivostok, exerted some influence on Japanese cities, especially in the cold period. Compared to Japanese cities and Vladivostok, yearly variations in ∑PAHs and 1-nitropyrene in Shenyang showed that their concentrations were considerably lower than those reported in past studies, indicating the positive effects of air pollutant control policies in China. These results not only describe the current characteristics and yearly variations of PAHs and NPAHs in typical urban cities in East Asia but also, more importantly, reveal that the effects of the East Asian monsoon play an important role in the analysis of atmospheric behaviours of PAHs and NPAHs. Furthermore, this study supports the role of multinational cooperation to promote air pollution control in East Asia.
Show more [+] Less [-]Litter contamination at a salt marsh: An ecological niche for biofouling in South Brazil Full text
2021
Pinheiro, Lara M. | Carvalho, Isadora V. | Agostini, Vanessa O. | Martinez-Souza, Gustavo | Galloway, Tamara S. | Pinho, Grasiela L.L.
The presence of solid litter and its consequences for coastal ecosystems is now being investigated around the world. Different types of material can be discarded in areas such as salt marshes, and various fouling organisms can associate with such items forming the Plastisphere. This study investigated the distribution of solid litter along zones (dry, middle, flooded) of a salt marsh environment in the Patos Lagoon Estuary (South Brazil) and the association of biofouling organisms with these items. Solid litter quantities were significantly higher in the dry zone when compared to the middle and flooded zones, showing an accumulation area where the water rarely reaches. Most items were made of plastic, as shown for many other coastal areas, and originated from food packaging, fishery and shipping activities and personal use. Although not statistically significant, there was a tendency of increased biofouling towards the flooded zone. Thirteen groups were found in association with solid litter items, mainly algae, amphipods, and gastropods. The preference for salt marsh zones, types of material and items’ colour was highly variable among groups of organisms, which can be related to their varied physiological requirements. In summary, significant plastic contamination of salt marshes of the Patos Lagoon was associated with a heterogeneous distribution of fouling communities.
Show more [+] Less [-]Toxicity of gabapentin-lactam on the early developmental stage of zebrafish (Danio rerio) Full text
2021
He, Yide | Jia, Dantong | Du, Sen | Zhu, Rongwen | Zhou, Wei | Pan, Shunlong | Zhang, Yongjun
Gabapentin-lactam (GBP-L) is a transformation product (TP) of gabapentin (GBP), a widely used anti-epileptic pharmaceutical. Due to its high persistence, GBP-L has been frequently detected in the surface water. However, the effects of GBP-L on aquatic organisms have not been thoroughly investigated. In the present study, zebrafish (Danio rerio) embryos as a model organism were used to study the impacts of GBP-L in terms of embryos LC₅₀, spontaneous movement at 24 hpf (hours post fertilization), heartbeat rates at 48 hpf, and body length at 72 hpf, with the concentrations of GBP-L down to 0.01 μg/L, covering its environmental concentrations. Various biomarkers from nervous, antioxidant and immune systems of zebrafish larvae were analyzed, including acetylcholinesterase, acetylcholine, dopamine, gamma-aminobutyric acid, superoxide dismutase, catalase, glutathione S-transferase, C reactive protein, and lysozyme, to assess its toxicity on these systems. RT-qPCR was then used to further verify the results and explain the toxicological mechanism at the gene level. The results demonstrated that GBP-L is much more toxic than its parent compound, and could lead to adverse impacts on the aquatic organisms even at every low concentrations.
Show more [+] Less [-]Spatiotemporal variation and distribution characteristics of crop residue burning in China from 2001 to 2018 Full text
2021
Yin, Shuai | Guo, Meng | Wang, Xiufeng | Yamamoto, Haruhiko | Ou, Wei
In this study, we integrated a remote-sensing fire product (MOD14A1) and land-use product (MCD12Q1) to extract the number of crop-residue burning (CRB) spots and the fire radiative power (FRP) in China from 2001 to 2018. Moreover, we conducted three trend analyses and two geographic distribution analyses to quantify the interannual variations and summarize the spatial characteristics of CRB on grid (0.25° × 0.25°) and regional scales. The results indicated that CRB presents distinctive seasonal patterns with each sub-region. All trend analyses suggested that the annual number of CRB spots in China increased significantly from 2001 to 2018; the linear trend reached 2615 spots/year, the Theil-Sen slope was slightly lower at 2557 spots/year, and the Mann-Kendal τ was 0.75. By dividing the study period into two sub-periods, we found that the five sub-regions presented different trends in the first and second sub-periods; e.g., the Theil-Sen slope of eastern China in the first sub-period (2001–2009) was 1021 spots/year but was −1599 spots/year in the second period (2010–2018). This suggests that summer CRB has been effectively mitigated in eastern China since 2010. Further, the average FRP of CRB spots presented a decreasing trend from 27.5 MW/spot in 2001 to only 15.8 MW/spot in 2018; this may be attributable to more scattered CRB rather than aggregated CRB. Collectively, the fire spots, FRP, and average FRP indicated that spring, summer, and autumn CRB had dropped dramatically over previous levels by 2018 due to strict mitigation measures by local governments.
Show more [+] Less [-]Molecular mechanism of zero valent iron-enhanced microbial azo reduction Full text
2021
Fang, Yun | Chen, Xingjuan | Zhong, Yin | Yang, Yonggang | Liu, Fei | Guo, Jun | Xu, Meiying
Zero valent iron (ZVI)–microbe technology has an increasing application on the removal of organic pollution, yet the molecular mechanism of microbe respond to ZVI is still a mystery. Here, we established a successive ZVI-enhanced microbial system to remove azo dye (a typical organic pollutant) by Shewanella decolorationis S12 (S. decolorationis S12, an effective azo dye degradation bacterium) and examined the gene expression time course (10, 30, 60, and 120 min) by whole genome transcriptional analysis. The addition of ZVI to the microbial degradation system increases the rate of azo reduction from ~60% to over 99% in 16 h reaction, suggesting the synergistic effect of ZVI and S12 on azo dye degradation. Comparing with the treatment without ZVI, less filamentous cells were observed in ZVI treated system, and approximately 8% genes affiliated with 10 different gene expression profiles in S. decolorationis S12 were significantly changed in 120 min during the ZVI-enhanced azo reduction. Intriguingly, MarR transcriptional factor might play a vital role in regulating ZVI-enhanced azo reduction in the aspect of energy production, iron homeostasis, and detoxification. Further investigation showed that the induced [Ni–Fe] H₂ase genes (hyaABCDEF) and azoreductase genes (mtrABC-omcA) contributed to ZVI-enhanced energy production, while the reduced iron uptake (hmuVCB and feoAB), induced sulfate assimilation (cysPTWA) and cysteine biosynthesis (cysM) related genes were essential to iron homeostasis and detoxification. This study disentangles underlying mechanisms of ZVI-enhanced organic pollution biotreatment in S. decolorationis S12.
Show more [+] Less [-]Analysis of cold-start NO2 and NOx emissions, and the NO2/NOx ratio in a diesel engine powered with different diesel-biodiesel blends Full text
2021
Zare, Ali | Stevanovic, Svetlana | Jafari, Mohammad | Verma, Puneet | Babaie, Meisam | Yang, Liping | Rahman, M.M. | Ristovski, Zoran D. | Brown, Richard J. | Bodisco, Timothy A.
In the transportation sector, the share of biofuels such as biodiesel is increasing and it is known that such fuels significantly affect NOx emissions. In addition to NOx emission from diesel engines, which is a significant challenge to vehicle manufacturers in the most recent emissions regulation (Euro 6.2), this study investigates NO₂ which is a toxic emission that is currently unregulated but is a focus to be regulated in the next regulation (Euro 7). This manuscript studies how the increasing share of biofuels affects the NO₂, NOx, and NO₂/NOx ratio during cold-start (in which the after-treatment systems are not well-effective and mostly happens in urban areas). Using a turbocharged cummins diesel engine (with common-rail system) fueled with diesel and biofuel derived from coconut (10 and 20% blending ratio), this study divides the engine warm-up period into 7 stages and investigates official cold- and hot-operation periods in addition to some intermediate stages that are not defined as cold in the regulation and also cannot be considered as hot-operation. Engine coolant, lubricating oil and exhaust temperatures, injection timing, cylinder pressure, and rate of heat release data were used to explain the observed trends. Results showed that cold-operation NOx, NO₂, and NO₂/NOx ratio were 31–60%, 1.14–2.42 times, and 3–8% higher than the hot-operation, respectively. In most stages, NO₂ and the NO₂/NOx ratio with diesel had the lowest value and they increased with an increase of biofuel in the blend. An injection strategy change significantly shifted the in-cylinder pressure and heat release diagrams, aligned with the sudden NOx drop during the engine warm-up. The adverse effect of cold-operation on NOx emissions increased with increasing biofuel share.
Show more [+] Less [-]Parental exposures increase the vulnerability of copepod offspring to copper and a simulated marine heatwave Full text
2021
Dinh, Khuong V. | Doan, Kha L.U. | Doan, Nam X. | Pham, Hung Q. | Le, Thi Hoang Oanh | Le, Minh-Hoang | Vu, Minh T.T. | Dahms, Hans-Uwe | Truong, Kiem N.
Extreme temperatures from marine heatwaves (MHWs) and pollution are dominant stressors in tropical marine ecosystems. However, we know little about the role of transgenerational effects of metals and MHWs in shaping the offspring's vulnerability to these stressors. We addressed this fundamental knowledge gap by exposing the planktonic copepod Pseudodiaptomus incisus to copper (Cu: control, 15 and 60 μg L⁻¹) under 2 temperatures (30 and a simulated marine heatwave at 34 °C) in the first generation (F1) and 16 treatments in F2: offspring from each of 4 F1 conditions (control or 15 μg Cu L⁻¹ × 30 or 34 °C) was reared in 4 F2 conditions (control or 15 μg Cu L⁻¹ × 30 or 34 °C). We assessed changes in copepod performance, particularly survival, adult size, grazing, and reproduction. In F1, Cu or marine heatwave (MHW) exposures reduced all fitness traits of F1; the effects were particularly strong when both stressors were present. Transgenerational effects of Cu or MHW also strongly reduced F2 performance. Direct Cu and MHW effects on the offspring were further strengthened by transgenerational effects, resulting in more substantial reductions in F2 performance when both generations were exposed to these stressors. As copepods are major food resources for corals, shrimps, or fish larvae and juveniles, strong transgenerational and direct effects of Cu and MHW can have a cascading effect on entire coastal food webs. These results highlight the importance of considering the interaction of transgenerational and direct effects of multiple stressors, particularly relevant for short-lived organisms in tropical marine ecosystems.
Show more [+] Less [-]Soil pH has a stronger effect than arsenic content on shaping plastisphere bacterial communities in soil Full text
2021
Li, Huan-Qin | Shen, Ying-Jia | Wang, Wen-Lei | Wang, Hong-Tao | Li, Hu | Su, Jian-Qiang
Microplastic (MP) pollution is widespread in various ecosystems and is colonized by microbes that form biofilms with compositions and functions. However, compared with aquatic environments, the soil environment has been poorly studied in terms of the taxonomic composition of microbial communities and the factors influencing the community structure of microbes in the plastisphere. In the present study, a microcosm experiment was conducted to investigate the plastisphere bacterial communities of MP (polyvinyl chloride, PVC) in soils with different pH (4.62, 6.5, and 7.46) and arsenic (As) contents (13 and 74 mg kg⁻¹). Bacterial communities in the plastisphere were dominated by Proteobacteria and Firmicutes, with distinct compositions and structures compared with soil bacterial communities. Soil pH and As content significantly affected the plastisphere bacterial communities. Constrained analysis of principal coordinates and a structural equation model demonstrated that soil pH had a stronger influence on the dissimilarity and diversity of bacterial communities than did soil As content. Soil pH affected As speciation in soil and on MP. The concentration of dimethylarsinic acid (DMA) was significantly higher on MP than that in soil, indicating that As methylation occurred on MP. These results suggest that environmental fluctuations govern plastisphere bacterial communities with cascading effects on biogeochemical cycling of As in the soil ecosystems.
Show more [+] Less [-]