Refine search
Results 1921-1930 of 2,459
Metal contamination in urban street sediment in Pisa (Italy) can affect the production of antioxidant metabolites in Taraxacum officinale Weber
2014
Bretzel, Francesca | Benvenuti, Stefano | Pistelli, Laura
Taraxacum officinale Weber (dandelion) is a very ubiquitous species, and it can grow in urban environments on metal-polluted sediments deposited in the gutters. This study represents a preliminary step to verify the presence of metals in sediments collected in urban streets in Pisa and to assess the alteration in dandelion metabolites in order to understand its adaptation to polluted environments. The soil and sediments were collected at three urban streets and analyzed for total and extractable Cr, Pb, Cu, Ni, and Zn. The total values of Pb and Zn in street sediments exceeded the limits for residential areas of soils. Zn was the most mobile of the metals analyzed. Floating cultivations trials were set up with dandelion seedlings and street sediments. The metals were analyzed in roots and leaves. Antioxidant power, anthocyanins, polyphenols, non-protein thiols (NP-TH) and chlorophylls were measured in dandelion leaves. The first two parameters (anthocyanins and antioxidant power) were higher in the polluted samples compared to the control; chlorophyll content was lower in the treated samples, whereas NP-TH showed no differences. NP-TH groups determined in roots were associated with the root content of Zn and Pb. These results indicate that dandelion can tolerate plant stress by altering its metabolite content.
Show more [+] Less [-]Dynamic modelling for cork boiling wastewater treatment at pilot plant scale
2014
De Torres-Socías, E. | Cabrera-Reina, A. | Trinidad, M. J. | Yuste, F. J. | Oller, I. | Malato, S.
Solar photo-Fenton process has been extensively reported to be highly efficient in the remediation of complex industrial wastewater containing several families of pollutants such as pharmaceuticals, dyes, pesticides, derivatives of wine, etc. Moreover, solar photo-Fenton mathematical modelling regarded as a powerful tool for scaling-up and process control purposes is hindered by the complexity and variability of its reaction mechanism which depends on the particular wastewater under study. In this work, non-biodegradable cork boiling wastewater has been selected as a case study for solar photo-Fenton dynamic modelling by using MATLAB® software. First of all physic-chemical pretreatment was applied attaining chemical oxygen demand (COD) reductions between 43 and 70 % and total suspended solid (TSS) reductions between 23 % and 59 %. After solar photo-Fenton treatment, COD decreased between 45 and 90 % after consumptions of H₂O₂ varying around 1.9 and 2.4 g/L. Individual calibration of the semi-empirical model by using experimental results made it possible to perfectly predict hydrogen peroxide variations throughout the treatment. It must be highlighted that slight deviations between predictions and experimental data must be attributed to important changes in wastewater characteristics.
Show more [+] Less [-]Occurrence, removal, and fate of progestogens, androgens, estrogens, and phenols in six sewage treatment plants around Dianchi Lake in China
2014
Huang, Bin | Li, Xiaoman | Sun, Wenwen | Ren, Dong | Li, Xiao | Li, Xiaonan | Liu, Ying | Li, Qiang | Pan, Xuejun
The occurrence and behavior of endocrine disrupting chemicals (EDCs) in sewage treatment plants (STPs), especially estrogens and phenols, have been closely concerned in previous studies. However, the systematical researches about progestogens and androgens were scarce in STPs adopting different treatment technologies. This work investigated the occurrence, removal, and fate of one progestogen, three androgens, four estrogens, and six phenols in six STPs around Dianchi Lake in China, where the influents, effluents of primary treatment, secondary treatment, and advanced treatment, as well as excess sludge samples, were analyzed. All of the above EDCs were detected out in influents of the six STPs. Bisphenol A, nonylphenol-mono-ethoxylate, and nonylphenol-diethoxylate were the dominant EDCs detected in those influent samples with the concentrations that varied from 637.6 to 1,684.0 ng/L, 633.8 to 1,540.0 ng/L, and 648.7 to 2,246.0 ng/L, respectively; E1 and dihydrotestosterone were the major steroids with the mean concentration of 126.8 and 277.4 ng/L. For effluents and sludges, phenols showed higher concentration (366.8–1,233.0 ng/L and 1,478.1–6,948.9 ng/g dry weight (dw)) and detection rate (100 %). The total removal rates were more than 80 % for most compounds in wastewater treatment processes, and high removal efficiency (86–100 %) was found for androgens and progestogens compared with estrogens (75–92 %) and phenols (62–85 %). The secondary treatment processes play significant roles on degrading EDCs, whereas the primary sedimentation has little effects. The treatment capacity of anoxic-anaerobic-anoxic membrane bioreactor and anaerobic/anoxic/oxic technologies was superior to the conventional oxidation ditch in the degradation of EDCs. The advanced treatment process, two units of filter (D-type or V-type), and ultraviolet disinfection were adopted and presented effective to remove these compounds. According to fate analysis, it was obvious that biological degradation was the main pathway on the removal of EDCs in STPs compared with adsorption. Risk quotients were calculated to assess ecological risks of those EDCs. Risk quotients of 54 and 61 % were more than 1 in effluents and sludges, respectively, showing potential hazard of effluents and sludges to the environment.
Show more [+] Less [-]The reductive degradation of 1,1,1-trichloroethane by Fe(0) in a soil slurry system
2014
Most studies on the treatment of chlorinated contaminants by Fe(0) focus on aqueous system tests. However, few is known about the effectiveness of these tests for degrading chlorinated contaminants such as 1,1,1-trichloroethane (TCA) in soil. In this work, the reductive degradation performance of 1,1,1-TCA by Fe(0) was thoroughly investigated in a soil slurry system. The effects of various factors including acid-washed iron, the initial 1,1,1-TCA concentration, Fe(0) dosage, slurry pH, and common constituents in groundwater and soil such as Cl⁻, HCO₃⁻, SO₄²⁻, and NO₃⁻anions and humic acid (HA) were evaluated. The experimental results showed that 1,1,1-TCA could be effectively degraded in 12 h for an initial Fe(0) dosage of 10 g L⁻¹and a soil/water mass ratio of 1:5. The soil slurry experiments showed two-stage degradation kinetics: a slow reaction in the first stage and a fast reductive degradation of 1,1,1-TCA in the second stage. The reductive degradation of 1,1,1-TCA was expedited as the mass concentration of Fe(0) increased. In addition, high pHs adversely affected the degradation of 1,1,1-TCA over a pH range of 5.4–8.0 and the reductive degradation efficiency decreased with increasing slurry pH. The initial 1,1,1-TCA concentration and the presence of Cl⁻and SO₄²⁻anions had negligible effects. HCO₃⁻anions had a accelerative effect on 1,1,1-TCA removal, and both NO₃⁻and HA had inhibitory effects. A Cl⁻mass balance showed that the amount of Cl⁻ions released into the soil slurry system during the 1,1,1-TCA degradation increased with increasing reaction time, suggesting that the main degradation mechanism of 1,1,1-TCA by Fe(0) in a soil slurry system was reductive dechlorination with 1,1-DCA as the main intermediate. In conclusion, this study provides a theoretical basis for the practical application of the remediation of contaminated sites containing chlorinated solvent.
Show more [+] Less [-]Nano-silver in drinking water and drinking water sources: stability and influences on disinfection by-product formation
2014
Tugulea, A.-M. | Bérubé, D. | Giddings, M. | Lemieux, F. | Hnatiw, J. | Priem, J. | Avramescu, M.-L.
Nano-silver is increasingly used in consumer products from washing machines and refrigerators to devices marketed for the disinfection of drinking water or recreational water. The nano-silver in these products may be released, ending up in surface water bodies which may be used as drinking water sources. Little information is available about the stability of the nano-silver in sources of drinking water, its fate during drinking water disinfection processes, and its interaction with disinfection agents and disinfection by-products (DBPs). This study aims to investigate the stability of nano-silver in drinking water sources and in the finished drinking water when chlorine and chloramines are used for disinfection and to observe changes in the composition of DBPs formed when nano-silver is present in the source water. A dispersion of nano-silver particles (10 nm; PVP-coated) was used to spike untreated Ottawa River water, treated Ottawa River water, organic-free water, and a groundwater at concentrations of 5 mg/L. The diluted dispersions were kept under stirred and non-stirred conditions for up to 9 months and analyzed weekly using UV absorption to assess the stability of the nano-silver particles. In a separate experiment, Ottawa River water containing nano-silver particles (at 0.1 and 1 mg/L concentration, respectively) was disinfected by adding sodium hypochlorite (a chlorinating agent) in sufficient amounts to maintain a free chlorine residual of approximately 0.4 mg/L after 24 h. The disinfected drinking water was then quenched with ascorbic acid and analyzed for 34 neutral DBPs (trihalomethanes, haloacetonitriles, haloacetaldehydes, 1,1 dichloro-2-propanone, 1,1,1 trichloro-2-propanone, chloropicrin, and cyanogen chloride). The results were compared to the profile of DBPs obtained under the same conditions in the absence of nano-silver and in the presence of an equivalent concentration of Ag⁺ ions (as AgNO₃). The stability of the nano-silver dispersions in untreated Ottawa River water, with a dissolved organic carbon concentration of 6 mg/L, was significantly higher than the stability of the nano-silver dispersions in distilled, organic-free water. Nano-silver particles suspended in the groundwater agglomerated and were quickly and quantitatively removed from the solution. Our data confirm previous observations that natural dissolved organic matter stabilizes nano-silver particles, while the high-ionic strength of groundwater appears to favor their agglomeration and precipitation. As expected, nano-silver was not stable in Ottawa River water through the chlorination process, but survived for many days when added to the Ottawa River water after treatment with chlorine or chloramines. Stirring appeared to have minimal effect on nano-silver stability in untreated and treated Ottawa River water. The profile of DBPs formed in the presence of nAg differed significantly from the profile of DBPs formed in the absence of nAg only at the 1 mg/L nAg concentration. The differences observed consisted mainly in reduced formation of some brominated DBPs and a small increase in the formation of cyanogen chloride. The reduced formation of brominated congeners may be explained by the decrease in available bromide due to the presence of Ag⁺ ions. It should be noted that a concentration of 1 mg/L is significantly higher than nAg concentrations that would be expected to be present in surface waters, but these results could be significant for the disinfection of some wastewaters with comparably high nano-silver concentrations.
Show more [+] Less [-]Singlet oxygen generation by photoactive polymeric microparticles with enhanced aqueous compatibility
2014
Fabregat, Víctor | Burguete, M Isabel | Galindo, Francisco | Luis, S. V. (Santíago V.)
Two new photoactive materials compatible with environmentally friendly solvents (water and methanol) have been synthesized and characterized. They are comprised of a porous matrix of polystyrene and divinylbenzene with bound Rose Bengal and additional pendant groups added to increase the hydrophilicity (ethylenediamine and γ-gluconolactone). The new polymers are efficient photocatalysts capable of generating singlet oxygen after irradiation with visible light. Photochemical oxygenations of 9,10-anthracenedipropionic acid and 2-furoic acid have been carried out. The measured conversions indicate that the new supported photosensitizers are more effective than the parent hydrophobic polymer.
Show more [+] Less [-]Arsenic and copper stabilisation in a contaminated soil by coal fly ash and green waste compost
2014
Tsang, Daniel C. W. | Yip, Alex C. K. | Olds, William E. | Weber, Paul A.
In situ metal stabilisation by amendments has been demonstrated as an appealing low-cost remediation strategy for contaminated soil. This study investigated the short-term leaching behaviour and long-term stability of As and Cu in soil amended with coal fly ash and/or green waste compost. Locally abundant inorganic (limestone and bentonite) and carbonaceous (lignite) resources were also studied for comparison. Column leaching experiments revealed that coal fly ash outperformed limestone and bentonite amendments for As stabilisation. It also maintained the As stability under continuous leaching of acidic solution, which was potentially attributed to high-affinity adsorption, co-precipitation, and pozzolanic reaction of coal fly ash. However, Cu leaching in the column experiments could not be mitigated by any of these inorganic amendments, suggesting the need for co-addition of carbonaceous materials that provides strong chelation with oxygen-containing functional groups for Cu stabilisation. Green waste compost suppressed the Cu leaching more effectively than lignite due to the difference in chemical composition and dissolved organic matter. After 9-month soil incubation, coal fly ash was able to minimise the concentrations of As and Cu in the soil solution without the addition of carbonaceous materials. Nevertheless, leachability tests suggested that the provision of green waste compost and lignite augmented the simultaneous reduction of As and Cu leachability in a fairly aggressive leaching environment. These results highlight the importance of assessing stability and remobilisation of sequestered metals under varying environmental conditions for ensuring a plausible and enduring soil stabilisation.
Show more [+] Less [-]Impact of raw pig slurry and pig farming practices on physicochemical parameters and on atmospheric N2O and CH 4 emissions of tropical soils, Uvéa Island (South Pacific)
2014
Roth, E. | Gunkel-Grillon, P. | Joly, L. | Thomas, X. | Decarpenterie, T. | Mappe-Fogaing, I. | Laporte-Magoni, C. | Dumelié, N. | Durry, G.
Emissions of CH₄and N₂O related to private pig farming under a tropical climate in Uvéa Island were studied in this paper. Physicochemical soil parameters such as nitrate, nitrite, ammonium, Kjeldahl nitrogen, total organic carbon, pH and moisture were measured. Gaseous soil emissions as well as physicochemical parameters were compared in two private pig farming strategies encountered on this island on two different soils (calcareous and ferralitic) in order to determine the best pig farming management: in small concrete pens or in large land pens. Ammonium levels were higher in control areas while nitrate and nitrite levels were higher in soils with pig slurry inputs, indicating that nitrification was the predominant process related to N₂O emissions. Nitrate contents in soils near concrete pens were important (≥55 μg N/g) and can thus be a threat for the groundwater. For both pig farming strategies, N₂O and CH₄fluxes can reach high levels up to 1 mg N/m²/h and 1 mg C/m²/h, respectively. CH₄emissions near concrete pens were very high (≥10.4 mg C/m²/h). Former land pens converted into agricultural land recover low N₂O emission rates (≤0.03 mg N/m²/h), and methane uptake dominates. N₂O emissions were related to nitrate content whereas CH₄emissions were found to be moisture dependent. As a result relating to the physicochemical parameters as well as to the gaseous emissions, we demonstrate that pig farming in large land pens is the best strategy for sustainable family pig breeding in Uvéa Islands and therefore in similar small tropical islands.
Show more [+] Less [-]Genotoxicity and cytotoxicity induced by municipal effluent in multiple organs of Wistar rats
2014
da Silva, Victor Hugo Pereira | de Moura, Carolina Foot Gomes | Ribeiro, Flavia Andressa Pidone | Cesar, Augusto | Pereira, Camilo Dias Seabra | Silva, Marcelo Jose Dias | Vilegas, Wagner | Ribeiro, Daniel Araki
The aim of this study was to evaluate cytotoxicity and genotoxicity in multiple organs of rats induced by municipal effluent released by submarine outfall in city of Santos. A total of 20 male Wistar rats were exposed to effluents by drinking water ad libitum at concentrations of 0, 10, 50, and 100 % for 30 days. Microscopic analysis revealed severe lesions such as necrosis and hemorrhagic areas in liver and kidney from animals exposed to effluent at 50 and 100 % concentration. DNA damage in peripheral blood, liver, and kidney cells were detected by comet assay at higher concentrations of effluent. Moreover, a decrease DNA repair capacity was detected in liver cells. Significant statistical differences (p < 0.05) for micronucleated cells from liver were noticed at 50 % concentration of effluent. Taken together, our results demonstrate that municipal effluent is able to induce cytotoxicity and genotoxicity in multiple organs of Wistar rats.
Show more [+] Less [-]Spectroscopic Raman study of sulphate precipitation sequence in Rio Tinto mining district (SW Spain)
2014
Rull, F. (Fernando) | Guerrero, Julia | Venegas, Gloria | Gázquez, Fernando | Medina, Jesús
Acidic waters and sulphate-rich precipitates are typical by-products of mining activity such as in Rio Tinto (Huelva, SW Spain). This river drains pyrite mines situated in the Iberian Pyrite Belt which have been in operation since the Bronze Age and probably constitutes the oldest continuously operating mining activity over the world. In the present work, we have used Raman spectroscopy to study a wide range of natural mineral samples collected at Rio Tinto which origin is related to evaporation and mineral transformation processes in a wet and extreme acidic environment. In addition, we simulated the phenomenon of mineral precipitation in controlled conditions by using a simulator developed at the laboratory evaporating natural water collected at Rio Tinto. Also, a series of experiments using the same waters as small droplets have been carried out using micro-Raman technique. The droplets were placed on substrates with different chemical composition and reactivity. The results reveal that the precipitation sequence occurred in Rio Tinto mainly comprises copiapite and coquimbite group minerals followed by several other low hydrated iron sulphates. The experiments carried out on droplets allow estimating with higher accuracy the precipitation sequence.
Show more [+] Less [-]