Refine search
Results 1931-1940 of 62,595
Early life stages of an arctic keystone species (Boreogadus saida) show high sensitivity to a water-soluble fraction of crude oil Full text
2016
Nahrgang, Jasmine | Dubourg, Paul | Frantzen, Marianne | Storch, Daniela | Dahlke, Flemming | Meador, James P.
Early life stages of an arctic keystone species (Boreogadus saida) show high sensitivity to a water-soluble fraction of crude oil Full text
2016
Nahrgang, Jasmine | Dubourg, Paul | Frantzen, Marianne | Storch, Daniela | Dahlke, Flemming | Meador, James P.
Increasing anthropogenic activities in the Arctic represent an enhanced threat for oil pollution in a marine environment that is already at risk from climate warming. In particular, this applies to species with free-living pelagic larvae that aggregate in surface waters and under the sea ice where hydrocarbons are likely to remain for extended periods of time due to low temperatures. We exposed the positively buoyant eggs of polar cod (Boreogadus saida), an arctic keystone species, to realistic concentrations of a crude oil water-soluble fraction (WSF), mimicking exposure of eggs aggregating under the ice to oil WSF leaking from brine channels following encapsulation in ice. Total hydrocarbon and polycyclic aromatic hydrocarbon levels were in the ng/L range, with most exposure concentrations below the limits of detection throughout the experiment for all treatments. The proportion of viable, free-swimming larvae decreased significantly with dose and showed increases in the incidence and severity of spine curvature, yolk sac alterations and a reduction in spine length. These effects are expected to compromise the motility, feeding capacity, and predator avoidance during critical early life stages for this important species. Our results imply that the viability and fitness of polar cod early life stages is significantly reduced when exposed to extremely low and environmentally realistic levels of aqueous hydrocarbons, which may have important implications for arctic food web dynamics and ecosystem functioning.
Show more [+] Less [-]Early life stages of an arctic keystone species (Boreogadus saida) show high sensitivity to a water-soluble fraction of crude oil Full text
2016
Increasing anthropogenic activities in the Arctic represent an enhanced threat for oil pollution in a marine environment that is already at risk from climate warming. In particular, this applies to species with free-living pelagic larvae that aggregate in surface waters and under the sea ice where hydrocarbons are likely to remain for extended periods of time due to low temperatures. We exposed the positively buoyant eggs of polar cod (Boreogadus saida), an arctic keystone species, to realistic concentrations of a crude oil water-soluble fraction (WSF), mimicking exposure of eggs aggregating under the ice to oil WSF leaking from brine channels following encapsulation in ice. Total hydrocarbon and polycyclic aromatic hydrocarbon levels were in the ng/L range, with most exposure concentrations below the limits of detection throughout the experiment for all treatments. The proportion of viable, free-swimming larvae decreased significantly with dose and showed increases in the incidence and severity of spine curvature, yolk sac alterations and a reduction in spine length. These effects are expected to compromise the motility, feeding capacity, and predator avoidance during critical early life stages for this important species. Our results imply that the viability and fitness of polar cod early life stages is significantly reduced when exposed to extremely low and environmentally realistic levels of aqueous hydrocarbons, which may have important implications for arctic food web dynamics and ecosystem functioning.
Show more [+] Less [-]Early life stages of an arctic keystone species (Boreogadus saida) show high sensitivity to a water-soluble fraction of crude oil Full text
2016
Nahrgang, Jasmine | Dubourg, Paul | Frantzen, marianne | Storch, Daniela | Dahlke, Flemming | Meador, James P.
Source: <a href=http://dx.doi.org/10.1016/j.envpol.2016.07.044>doi: 10.1016/j.envpol.2016.07.044</a> | Increasing anthropogenic activities in the Arctic represent an enhanced threat for oil pollution in a marine environment that is already at risk from climate warming. In particular, this applies to species with free-living pelagic larvae that aggregate in surface waters and under the sea ice where hydrocarbons are likely to remain for extended periods of time due to low temperatures. We exposed the positively buoyant eggs of polar cod (Boreogadus saida), an arctic keystone species, to realistic concentrations of a crude oil water-soluble fraction (WSF), mimicking exposure of eggs aggregating under the ice to oil WSF leaking from brine channels following encapsulation in ice. Total hydrocarbon and polycyclic aromatic hydrocarbon levels were in the ng/L range, with most exposure concentrations below the limits of detection throughout the experiment for all treatments. The proportion of viable, free-swimming larvae decreased significantly with dose and showed increases in the incidence and severity of spine curvature, yolk sac alterations and a reduction in spine length. These effects are expected to compromise the motility, feeding capacity, and predator avoidance during critical early life stages for this important species. Our results imply that the viability and fitness of polar cod early life stages is significantly reduced when exposed to extremely low and environmentally realistic levels of aqueous hydrocarbons, which may have important implications for arctic food web dynamics and ecosystem functioning.
Show more [+] Less [-]Bacterial oxidation of arsenic in polluted soils: role of organic matters Full text
2012
Lescure, Tiffanie | Joulian, Catherine | Bauda, Pascale | Hénault, Catherine | Battaglia-Brunet, Fabienne
Microbes play a major role on the behavior of metals and metalloids in soils. Arsenic speciation, in particular, is related to the activity of bacteria able to oxidize, reduce or methylate this element, and determines mobility, bioavailability and toxicity of As. Arsenate (AsV) is less toxic and less mobile than arsenite (AsIII). Bacterial As(III)-oxidation tends therefore to reduce the toxicity of arsenic in soils and its risk of transfer toward underlying aquifers. It is well known that organic matter influences abiotically the speciation of arsenic and thus its mobility in soils. Previous results suggest an effect of organic matter on the kinetics or efficiency of bacterial As(III)-oxidation in presence of oxygen, thus in conventional physico-chemical conditions of a surface soil. The objective of the present project is to quantify the influence of organic matters on the bacterial speciation of arsenic in polluted soils. Moreover, the biogeochemical consequences of this phenomenon on the mobility and ecotoxicity of this metalloid will be studied. The first task of this program is the systematic investigation of the influence of different types and concentrations of organic matters on the activity of As(III)-oxidizing pure strains. Influence of simple substrates (aspartate, succinate) and complex substrate (yeast extract) on As(III)-oxidation kinetics has been studied. For each experiment, the bacterial growth and the expression of genes involved in the speciation of arsenic, i.e. aio and ars genes, has been monitored. A direct perspective of this work will be to perform experiments with humic and fulvic acids (complex organic matter commonly found in soils), and with water-extracted organic matter from polluted soils. Then the As(III)-oxidation activity of bacterial communities extracted from contaminated soils will be followed. These assays should allow the screening of conditions which will be applied in subsequent experiments with several real contaminated soils, including a former mining site, impacted industrial sites, and a forest soil heavily contaminated after arsenical ammunitions storage. This work is co-funded by BRGM and ADEME (convention TEZ 11-16).
Show more [+] Less [-]Biosorption Capacity for Cadmium of Brown Seaweed Sargassum sinicola and Sargassum lapazeanum in the Gulf of California Full text
2011
MONICA PATRON PRADO | MARIA MARGARITA CASAS VALDEZ | Elisa Serviere Zaragoza | TANIA ZENTENO SAVIN | Daniel Bernardo Lluch Cota | Lía Celina Méndez Rodríguez
Biosorption Capacity for Cadmium of Brown Seaweed Sargassum sinicola and Sargassum lapazeanum in the Gulf of California Full text
2011
MONICA PATRON PRADO | MARIA MARGARITA CASAS VALDEZ | Elisa Serviere Zaragoza | TANIA ZENTENO SAVIN | Daniel Bernardo Lluch Cota | Lía Celina Méndez Rodríguez
"Brown algae Sargassum sinicola and Sargassum lapazeanum were tested as cadmium biosorbents in coastal environments close to natural and enriched areas of phosphorite ore. Differences in the concentration of cadmium in these brown algae were found, reflecting the bioavailability of the metal ion in seawater at several sites. In the laboratory, maximum biosorption capacity (q max) of cadmium by these nonliving algae was determined according to the Langmuir adsorption isotherm as 62.42 ± 0.44 mg g−1 with the affinity constant (b) of 0.09 and 71.20 ± 0.80 with b of 0.03 for S. sinicola and S. lapazeanum, respectively. Alginate yield was 19.16 ± 1.52% and 12.7 ± 1.31%, respectively. Although S. sinicola had far lower biosorption capacity than S. lapazeanum, the affinity for cadmium for S. sinicola makes this alga more suitable as a biosorbent because of its high q max and large biomass on the eastern coast of the Baja California Peninsula. Sargassum biomass was estimated at 180,000 t, with S. sinicola contributing to over 70%."
Show more [+] Less [-]Biosorption Capacity for Cadmium of Brown Seaweed Sargassum sinicola and Sargassum lapazeanum in the Gulf of California Full text
2011
Patrón-Prado, Mónica | Casas Valdez, M. Margarita | Serviere-Zaragoza, Elisa | Zenteno-Savin, Tania | Lluch-Cota, Daniel B. | Méndez-Rodríguez, Lía
Brown algae Sargassum sinicola and Sargassum lapazeanum were tested as cadmium biosorbents in coastal environments close to natural and enriched areas of phosphorite ore. Differences in the concentration of cadmium in these brown algae were found, reflecting the bioavailability of the metal ion in seawater at several sites. In the laboratory, maximum biosorption capacity (q max) of cadmium by these nonliving algae was determined according to the Langmuir adsorption isotherm as 62.42 ± 0.44 mg g−1 with the affinity constant (b) of 0.09 and 71.20 ± 0.80 with b of 0.03 for S. sinicola and S. lapazeanum, respectively. Alginate yield was 19.16 ± 1.52% and 12.7 ± 1.31%, respectively. Although S. sinicola had far lower biosorption capacity than S. lapazeanum, the affinity for cadmium for S. sinicola makes this alga more suitable as a biosorbent because of its high q max and large biomass on the eastern coast of the Baja California Peninsula. Sargassum biomass was estimated at 180,000 t, with S. sinicola contributing to over 70%.
Show more [+] Less [-]Copper and Cadmium Biosorption by Dried Seaweed Sargassum sinicola in Saline Wastewater Full text
2010
MONICA PATRON PRADO | BAUDILIO ACOSTA VARGAS | Elisa Serviere Zaragoza | Lía Celina Méndez Rodríguez
Copper and Cadmium Biosorption by Dried Seaweed Sargassum sinicola in Saline Wastewater Full text
2010
MONICA PATRON PRADO | BAUDILIO ACOSTA VARGAS | Elisa Serviere Zaragoza | Lía Celina Méndez Rodríguez
"Rates of biosorption of cadmium and copper ions by nonliving biomass of the brown macroalga Sargassum sinicola under saline conditions were studied. Batch experiments show that the ability to remove cadmium is significantly diminished (from 81.8% to 5.8%), while the ability to remove copper remains high (from 89% to 80%) at a range of salinity from 0 to 40 psu. Maximum capacity of biosorption at 35 psu was 3.44 mg g−1 for cadmium and 116 mg g−1 for copper. The presence of salt did not significantly affect the rate of biosorption, which was about 90% of saturation in 60 min for both metals. There is an antagonistic effect on biosorption when both metals are present in the solution."
Show more [+] Less [-]Copper and Cadmium Biosorption by Dried Seaweed Sargassum sinicola in Saline Wastewater Full text
2010
Patrón-Prado, Mónica | Acosta-Vargas, Baudilio | Serviere-Zaragoza, Elisa | Méndez-Rodríguez, Lía C.
Rates of biosorption of cadmium and copper ions by nonliving biomass of the brown macroalga Sargassum sinicola under saline conditions were studied. Batch experiments show that the ability to remove cadmium is significantly diminished (from 81.8% to 5.8%), while the ability to remove copper remains high (from 89% to 80%) at a range of salinity from 0 to 40 psu. Maximum capacity of biosorption at 35 psu was 3.44 mg g⁻¹ for cadmium and 116 mg g⁻¹ for copper. The presence of salt did not significantly affect the rate of biosorption, which was about 90% of saturation in 60 min for both metals. There is an antagonistic effect on biosorption when both metals are present in the solution.
Show more [+] Less [-]Ozone et canicule: Quels impacts sur les cultures et les écosystèmes ? Full text
2004
Castell, Jean-François
absent
Show more [+] Less [-]The Global Exposure of Forests to Air Pollutants Full text
1999
Fowler, David | Cape, J. Neil | Coyle, Mhairi | Flechard, Chris, | Kuylenstierna, Johan | Hicks, Kevin | Derwent, Dick | Johnson, Colin
Uptake of chemicals from tire wear particles into aquatic organisms - search for biomarkers of exposure in blue mussels | Uptake of chemicals from tire wear particles into aquatic organisms - search for biomarkers of exposure in blue mussels Full text
2025
Foscari, Aurelio Giovanni | Herzke, Dorte | Mowafi, Riham | Seiwert, Bettina | De Witte, Bavo | Delbare, Daan | Heras, Gustavo Blanco | Gago, Jesus | Reemtsma, Thorsten
Uptake of chemicals from tire wear particles into aquatic organisms - search for biomarkers of exposure in blue mussels | Uptake of chemicals from tire wear particles into aquatic organisms - search for biomarkers of exposure in blue mussels Full text
2025
Foscari, Aurelio Giovanni | Herzke, Dorte | Mowafi, Riham | Seiwert, Bettina | De Witte, Bavo | Delbare, Daan | Heras, Gustavo Blanco | Gago, Jesus | Reemtsma, Thorsten
Little is known about the exposure of aquatic biota to tire and road wear particles (TRWP) washed away from roads. Mussels were exposed for 7 days to model TRWP (m-TRWP), produced by milling tire tread particles with pure sand, and analyzed for 21 tire-related compounds by liquid chromatography-high resolution-mass spectrometry (LC-HRMS). Upon exposure to 0.5 g/L of m-TRWP, 15 compounds were determined from 944 μg/kg wet weight (diphenylguanidine, DPG) over 18 μg/kg for an oxidation product of N-(1,3-dimethylbutyl)-N′-phenyl-p-phenylenediamine (6-PPDQ) to 0.6 μg/kg (4-hydroxydiphenyl amine). Transfer into mussels was highest for PTPD, DTPD and 6-PPDQ and orders of magnitude lower for 6-PPD. During 7 days depuration the concentration of all determined chemicals decreased to remaining concentrations between ~50 % (PTPD, DTPD) and 6 % (6-PPD). Suspect and non-target screening found 37 additional transformation products (TPs) of tire additives, many of which did not decrease in concentration during depuration, among them ten likely TPs of DPG, two of 6-PPD and PTPD and two of 1,2-dihydro-2,2,4-trimethylquinoline. A wide variety of chemicals is taken up by mussels upon exposure to m-TRWP and a wide range of TPs is formed, enabling the differentiation of biomarkers of exposure to TRWP and biomarkers of exposure to tire-associated chemicals. | publishedVersion
Show more [+] Less [-]Uptake of chemicals from tire wear particles into aquatic organisms - search for biomarkers of exposure in blue mussels (Mytilus edulis) Full text
2025
Foscari, Aurelio | Herzke, Dorte | Mowafi, Riham | Seiwert, Bettina | De Witte, Bavo | Delbare, Daan | Blanco-Heras, Gustavo | Gago, Jesús | Reemtsma, Thorsten | Joint Programming Initiative Healthy and Productive Seas and Oceans | Higher Education and Research (Germany) | European Commission | Helmholtz Association
Little is known about the exposure of aquatic biota to tire and road wear particles (TRWP) washed away from roads. Mussels were exposed for 7 days to model TRWP (m-TRWP), produced by milling tire tread particles with pure sand, and analyzed for 21 tire-related compounds by liquid chromatography-high resolution-mass spectrometry (LC-HRMS). Upon exposure to 0.5 g/L of m-TRWP, 15 compounds were determined from 944 μg/kg wet weight (diphenylguanidine, DPG) over 18 μg/kg for an oxidation product of N-(1,3-dimethylbutyl)-N′-phenyl-p-phenylenediamine (6-PPDQ) to 0.6 μg/kg (4-hydroxydiphenyl amine). Transfer into mussels was highest for PTPD, DTPD and 6-PPDQ and orders of magnitude lower for 6-PPD. During 7 days depuration the concentration of all determined chemicals decreased to remaining concentrations between ~50 % (PTPD, DTPD) and 6 % (6-PPD). Suspect and non-target screening found 37 additional transformation products (TPs) of tire additives, many of which did not decrease in concentration during depuration, among them ten likely TPs of DPG, two of 6-PPD and PTPD and two of 1,2-dihydro-2,2,4-trimethylquinoline. A wide variety of chemicals is taken up by mussels upon exposure to m-TRWP and a wide range of TPs is formed, enabling the differentiation of biomarkers of exposure to TRWP and biomarkers of exposure to tire-associated chemicals. | This study was performed in the ANDROMEDA project in the framework of the JPI Oceans Joint Action “Ecological Aspects of Microplastic”. We thank our cooperation partners in this project for fruitful discussion and collaboration. We gratefully acknowledge funding by the German Ministry for Education and Research (BMBF; FKz 03F0850A). The authors wish to thank the ProVIS Centre for Chemical Microscopy which is supported by European Regional Development Funds (EFRE) and the Helmholtz Association for providing access to the scanning electron microscope. Technical support by Petra Keil (UFZ) is gratefully acknowledged. We also want to thank the laboratory technicians of the ILVO Marine Analytical Lab and Aquaculture lab for technical support during the exposure experiment. | Peer reviewed
Show more [+] Less [-]Effects of airgun discharges used in seismic surveys on development and mortality in nauplii of the copepod Acartia tonsa | Effects of airgun discharges used in seismic surveys on development and mortality in nauplii of the copepod Acartia tonsa Full text
2023
Vereide, Emilie Hernes | Mihaljevic, Marina | Browman, Howard | Fields, David M. | Agersted, Mette Dalgaard | Titelman, Josefin | Jong, Karen de
Effects of airgun discharges used in seismic surveys on development and mortality in nauplii of the copepod Acartia tonsa | Effects of airgun discharges used in seismic surveys on development and mortality in nauplii of the copepod Acartia tonsa Full text
2023
Vereide, Emilie Hernes | Mihaljevic, Marina | Browman, Howard | Fields, David M. | Agersted, Mette Dalgaard | Titelman, Josefin | Jong, Karen de
Seismic surveys are conducted worldwide to explore for oil and gas deposits and to map subsea formations. The airguns used in these surveys emit low-frequency sound waves. Studies on zooplankton responses to airguns report a range of effects, from none to substantial mortality. A field experiment was conducted to assess mortality and naupliar body length of the calanoid copepod Acartia tonsa when exposed to the discharge of two 40-inch airguns. Nauplii were placed in plastic bags and attached to a line at a depth of 6 m. For each treatment, three bags of nauplii were exposed to one of three treatments for 2.5 h: Airgun array discharge, a boat control, or a silent control. After exposure, nauplii were kept in filtered seawater in the laboratory without food. Immediate mortality in the nauplii was approximately 14% compared to less than 4% in the silent and boat control. Similarly, there was higher mortality in the airgun exposed nauplii up to six days after exposure compared to the control treatments. Nearly all of the airgun exposed nauplii were dead after four days, while >50% of the nauplii in the control treatments were alive at six days post-exposure. There was an interaction between treatment and time on naupliar body length, indicating lower growth in the nauplii exposed to the airgun discharge (growth rates after 4 days: 1.7, 5.4, and 6.1 μm d−1 in the airgun exposed, silent control, and boat control, respectively). These experiments indicate that the output of two small airguns affected mortality and growth of the naupliar stages of Acartia tonsa in close vicinity to the array. | publishedVersion | publishedVersion
Show more [+] Less [-]Effects of airgun discharges used in seismic surveys on development and mortality in nauplii of the copepod Acartia tonsa | ENEngelskEnglishEffects of airgun discharges used in seismic surveys on development and mortality in nauplii of the copepod Acartia tonsa Full text
2023
Vereide, Emilie Hernes | Mihaljevic, Marina | Browman, Howard | Fields, David M. | Agersted, Mette Dalgaard | Titelman, Josefin | Jong, Karen de
Seismic surveys are conducted worldwide to explore for oil and gas deposits and to map subsea formations. The airguns used in these surveys emit low-frequency sound waves. Studies on zooplankton responses to airguns report a range of effects, from none to substantial mortality. A field experiment was conducted to assess mortality and naupliar body length of the calanoid copepod Acartia tonsa when exposed to the discharge of two 40-inch airguns. Nauplii were placed in plastic bags and attached to a line at a depth of 6 m. For each treatment, three bags of nauplii were exposed to one of three treatments for 2.5 h: Airgun array discharge, a boat control, or a silent control. After exposure, nauplii were kept in filtered seawater in the laboratory without food. Immediate mortality in the nauplii was approximately 14% compared to less than 4% in the silent and boat control. Similarly, there was higher mortality in the airgun exposed nauplii up to six days after exposure compared to the control treatments. Nearly all of the airgun exposed nauplii were dead after four days, while >50% of the nauplii in the control treatments were alive at six days post-exposure. There was an interaction between treatment and time on naupliar body length, indicating lower growth in the nauplii exposed to the airgun discharge (growth rates after 4 days: 1.7, 5.4, and 6.1 μm d−1 in the airgun exposed, silent control, and boat control, respectively). These experiments indicate that the output of two small airguns affected mortality and growth of the naupliar stages of Acartia tonsa in close vicinity to the array.
Show more [+] Less [-]South polar skua (Catharacta maccormicki) as biovectors for long-range transport of persistent organic pollutants to Antarctica Full text
2022
Wild, S. | Eulaers, I. | Covaci, A. | Bossi, R. | Hawker, D. | Cropp, R. | Southwell, C. | Emmerson, L. | Lepoint, Gilles | Eisenmann, P. | Nash, S. B.
peer reviewed | Migratory bird species may serve as vectors of contaminants to Antarctica through the local deposition of guano, egg abandonment, or mortality. To further investigate this chemical input pathway, we examined the contaminant burdens and profiles of the migratory South polar skua (Catharacta maccormicki) and compared them to the endemic Adélie penguin (Pygoscelis adeliae). A range of persistent organic pollutants were targeted in muscle and guano to facilitate differentiation of likely exposure pathways. A total of 56 of 65 targeted analytes were detected in both species, but there were clear profile and magnitude differences between the species. The South polar skua and Adélie penguin muscle tissue burdens were dominated by p,p′-dichlorodiphenyldichloroethylene (mean 5600 ng g−1 lw and 330 ng g−1 lw respectively) and hexachlorobenzene (mean 2500 ng g−1 lw and 570 ng g−1 lw respectively), a chemical profile characteristic of the Antarctic and Southern Ocean region. Species profile differences, indicative of exposure at different latitudes, were observed for polychlorinated biphenyls (PCBs), with lower chlorinated congeners and deca-chlorinated PCB-209 detected in South polar Skua, but not in Adélie penguins. Notably, the more recently used perfluoroalkyl substances and the brominated flame retardants, hexabromocyclododecane and tetrabromobisphenol A, were detected in both species. This finding suggests local exposure, given the predicted slow and limited long-range environmental transport capacity of these compounds to the eastern Antarctic sector. © 2021
Show more [+] Less [-]Microplastic variability in subsurface water from the Arctic to Antarctica Full text
2022
Pakhomova, Svetlana | Berezina, Anfisa | Lusher, Amy | Zhdanov, Igor | Silvestrova, Ksenia | Zavialov, Peter | van Bavel, Bert | Yakushev, Evgeniy
Microplastic variability in subsurface water from the Arctic to Antarctica Full text
2022
Pakhomova, Svetlana | Berezina, Anfisa | Lusher, Amy | Zhdanov, Igor | Silvestrova, Ksenia | Zavialov, Peter | van Bavel, Bert | Yakushev, Evgeniy
Comparative investigations of microplastic (MP) occurrence in the global ocean are often hampered by the application of different methods. In this study, the same sampling and analytical approach was applied during five different cruises to investigate MP covering a route from the East-Siberian Sea in the Arctic, through the Atlantic, and into the Antarctic Peninsula. A total of 121 subsurface water samples were collected using underway pump-through system on two different vessels. This approach allowed subsurface MP (100 μm–5 mm) to be evaluated in five regions of the World Ocean (Antarctic, Central Atlantic, North Atlantic, Barents Sea and Siberian Arctic) and to assess regional differences in MP characteristics. The average abundance of MP for whole studied area was 0.7 ± 0.6 items/m3 (ranging from 0 to 2.6 items/m3), with an equal average abundance for both fragments and fibers (0.34 items/m3). Although no statistical difference was found for MP abundance between the studied regions. Differences were found between the size, morphology, polymer types and weight concentrations. The Central Atlantic and Barents Sea appeared to have more MP in terms of weight concentration (7–7.5 μg/m3) than the North Atlantic and Siberian Arctic (0.6 μg/m3). A comparison of MP characteristics between the two Hemispheres appears to indicate that MP in the Northern Hemisphere mostly originate from terrestrial input, while offshore industries play an important role as a source of MP in the Southern Hemisphere. The waters of the Northern Hemisphere were found to be more polluted by fibers than those of the Southern Hemisphere. The results presented here suggest that fibers can be transported by air and water over long distances from the source, while distribution of fragments is limited mainly to the water mass where the source is located. | publishedVersion
Show more [+] Less [-]Microplastic variability in subsurface water from the Arctic to Antarctica Full text
2022
Pakhomova, Svetlana | Berezina, Anfisa | Lusher, Amy L. | Zhdanov, Igorʹ | Silvestrova, Ksenia | Zavialov, Peter | van Bavel, Bert | Yakushev, Evgeniy
Comparative investigations of microplastic (MP) occurrence in the global ocean are often hampered by the application of different methods. In this study, the same sampling and analytical approach was applied during five different cruises to investigate MP covering a route from the East-Siberian Sea in the Arctic, through the Atlantic, and into the Antarctic Peninsula. A total of 121 subsurface water samples were collected using underway pump-through system on two different vessels. This approach allowed subsurface MP (100 μm–5 mm) to be evaluated in five regions of the World Ocean (Antarctic, Central Atlantic, North Atlantic, Barents Sea and Siberian Arctic) and to assess regional differences in MP characteristics. The average abundance of MP for whole studied area was 0.7 ± 0.6 items/m³ (ranging from 0 to 2.6 items/m³), with an equal average abundance for both fragments and fibers (0.34 items/m³). Although no statistical difference was found for MP abundance between the studied regions. Differences were found between the size, morphology, polymer types and weight concentrations. The Central Atlantic and Barents Sea appeared to have more MP in terms of weight concentration (7–7.5 μg/m³) than the North Atlantic and Siberian Arctic (0.6 μg/m³). A comparison of MP characteristics between the two Hemispheres appears to indicate that MP in the Northern Hemisphere mostly originate from terrestrial input, while offshore industries play an important role as a source of MP in the Southern Hemisphere. The waters of the Northern Hemisphere were found to be more polluted by fibers than those of the Southern Hemisphere. The results presented here suggest that fibers can be transported by air and water over long distances from the source, while distribution of fragments is limited mainly to the water mass where the source is located.
Show more [+] Less [-]Microplastic variability in subsurface water from the Arctic to Antarctica Full text
2022
Pakhomova, Svetlana | Berezina, Anfisa | Lusher, Amy L. | Zhdanov, Igor | Silvestrova, Ksenia | Zavialov, Peter | van Bavel, Bert | Yakushev, Evgeniy
Comparative investigations of microplastic (MP) occurrence in the global ocean are often hampered by the application of different methods. In this study, the same sampling and analytical approach was applied during five different cruises to investigate MP covering a route from the East-Siberian Sea in the Arctic, through the Atlantic, and into the Antarctic Peninsula. A total of 121 subsurface water samples were collected using underway pump-through system on two different vessels. This approach allowed subsurface MP (100 μm–5 mm) to be evaluated in five regions of the World Ocean (Antarctic, Central Atlantic, North Atlantic, Barents Sea and Siberian Arctic) and to assess regional differences in MP characteristics. The average abundance of MP for whole studied area was 0.7 ± 0.6 items/m3 (ranging from 0 to 2.6 items/m3), with an equal average abundance for both fragments and fibers (0.34 items/m3). Although no statistical difference was found for MP abundance between the studied regions. Differences were found between the size, morphology, polymer types and weight concentrations. The Central Atlantic and Barents Sea appeared to have more MP in terms of weight concentration (7–7.5 μg/m3) than the North Atlantic and Siberian Arctic (0.6 μg/m3). A comparison of MP characteristics between the two Hemispheres appears to indicate that MP in the Northern Hemisphere mostly originate from terrestrial input, while offshore industries play an important role as a source of MP in the Southern Hemisphere. The waters of the Northern Hemisphere were found to be more polluted by fibers than those of the Southern Hemisphere. The results presented here suggest that fibers can be transported by air and water over long distances from the source, while distribution of fragments is limited mainly to the water mass where the source is located. | publishedVersion
Show more [+] Less [-]